To solve this problem it is necessary to simply apply the concepts related to cross-multiply and proportion between units.
Let's start first by relating the amount of dose needed to be supplied per hour, in other words,
The infusion of 250ml should be supplied at a rate of 75ml / hour, so what amount x of mg hour should be supplied with 50Mg.




Converting to mcg units we know that 1mg is equal to 1000mcg and that 1 hour contains 60 min, therefore



The dose should be distributed per kilogram of the patient so if the patient weighs 72.4kg,


Therefore the client will receive 3.5mcg/kg/min.
Answer:
The temperature is 2584.5 K
Explanation:
Given:
Activation energy

Preexponential

Diffusion flux

Thickness of plate
m
Concentration of carbon at two faces

From the formula of temperature in terms of diffusion flux,

Where
8.314
( gas constant )
Put the values and find the temperature,

K
Therefore, the temperature is 2584.5 K
Hi there!
We can use the following kinematic equation:

vf = final velocity (? m/s)
vi = intial velocity (0 m/s)
a = acceleration (5 m/s²)
d = displacement (8 m)
Plug in the givens and solve.

Answer:
I think the answer is True
Answer:
(a): The resultant force acting on the object are F= (5.99 i + 14.98 j).
(b): The magnitude of the resultant force are F= 16.4 N < 68.19º .
Explanation:
m= 3kg
a= 2 i + 5 j = 5 .38 < 68.19 º
F= m * a
F= 3* ( 5.38 < 68.19º )
F= 16.4 N < 68.19º
Fx= F * cos(68.19º)
Fx= 5.99
Fy= F* sin(68.19º)
Fy= 14.98