Answer:
Energy converted = 
Explanation:
Recall that Power is the rate at which energy is transferred therefore defined by the mathematical formula: 
Since the information on the power of the runner is given, as well as the time the energy conversion takes place, we can then use this equation to find how much energy is been converted. Notice that we just need to change the given time *10 minutes) into the appropriate units (seconds)to get the answer in SI units of energy (Joules). The conversion of 10 minutes into seconds is done by multiplying : 10 minutes * 60 seconds/minute = 600 seconds.
We use this then to find the energy converted by the runner:

Answer:
Explanation:
Orbital radius of satellite A , Ra = 6370 + 6370 = 12740 km
Orbital radius of satellite B , Rb = 6370 + 19110 = 25480 km
Orbital potential energy of a satellite = - GMm / r where G is gravitational constant , M is mass of the earth and m is mass of the satellite
Orbital potential energy of a satellite A = - GMm / Ra
Orbital potential energy of a satellite B = - GMm / Rb
PE of satellite B /PE of satellite A
= Ra / Rb
= 12740 / 25480
= 1 / 2
b ) Kinetic energy of a satellite is half the potential energy with positive value , so ratio of their kinetic energy will also be same
KE of satellite B /KE of satellite A
= 1 / 2
c ) Total energy will be as follows
Total energy = - PE + KE
- P E + PE/2
= - PE /2
Total energy of satellite B / Total energy of A
= 1 / 2
Satellite B will have greater total energy because its negative value is less.
Answer:
B) 16.67
Explanation:
If the dimension of one lumber is 2" × 6", the total area of one lumber will be 12inch²
If the total board feet of lumber there is 200in, therefore the total board of lumber that will be needed is 200/12 which gives 16.67 lumbers
<h3>
Answer: 130 newtons</h3>
===============================================================
Explanation:
We'll need the acceleration first.
- The initial speed (let's call that Vi) is 8.0 m/s
- The final speed (Vf) is 0 m/s since Sam comes to a complete stop at the end.
- This happens over a duration of t = 4.0 seconds
The acceleration is equal to the change in speed over change in time
a = acceleration
a = (change in speed)/(change in time)
a = (Vf - Vi)/(4 seconds)
a = (0 - 8.0)/4
a = -8/4
a = -2
The acceleration is -2 m/s^2, meaning that Sam slows down by 2 m/s every second. Negative accelerations are often associated with slowing down. The term "deceleration" can be used here.
Here's a further break down of Sam's speeds at the four points of interest
- At 0 seconds, he's going 8 m/s
- At the 1 second mark, he's slowing down to 8-2 = 6 m/s
- At the 2 second mark, he's now at 6-2 = 4 m/s
- At the 3 second mark, he's at 4-2 = 2 m/s
- Finally, at the 4 second mark, he's at 2-2 = 0 m/s
Next, we'll apply Newton's Second Law of motion
F = m*a
where,
- F = force applied
- m = mass
- a = acceleration
We just found the acceleration, and the mass is fairly easy as all we need to do is add Sam's mass with the sled's mass to get 60+5.0 = 65 kg
So the force applied must be:
F = m*a
F = 65*(-2)
F = -130 newtons
This force is negative to indicate it's pushing against the sled's momentum to slow Sam down.
The magnitude of this force is |F| = |-130| = 130 newtons
Answer:
Explanation:
The motion of Mary along the circular path is a centripetal.
As Mary moves from one edge of the circular platform to the other edge, she is covering a distance which is the radius of the circular path at a velocity.
According to the relationship
w = v/r where
w is the angular velocity
r is the radius
v is the linear velocity
Initially, before Mary starts, her linear speed is zero and her angular velocity is also zero. As she move towards the opposite edge, she is covering a distance of radius r. According to the formula, increase in radius will leads to decrease in her angular velocity and vice versa. As Mary starts moving towards the centre of the circular path, her angular velocity increases, at the centre of the platform, her angular velocity is at maximum at this point. As she moves further from the center to the other edge, her angular velocity decreases due to increase in distance covered across the circular path.