To solve this we assume
that the gas inside the balloon is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 =284.15 x 2.50 / 303.15
<span>V2 = 2.34 L</span>
C.) <span>The total mass of an object can be assumed to be focused at one point, which is called its center of "Mass"
Hope this helps!</span>
Answer:
33.6 m
Explanation:
Given:
v₀ = 0 m/s
a = 47.41 m/s²
t = 1.19 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (0 m/s) (1.19 s) + ½ (47.41 m/s²) (1.19 s)²
Δx = 33.6 m
Answer:
The attraction is due to the induced charge.
Explanation:
When we approach a charged rod to a sheet, an induced load is produced in the sheet that is of the same magnitude as the rod of opposite sign, this is because the charges of different sign attract each other, this explains the initial attraction.
This induced load occurs if importing the plate load
The attraction is due to the induced charge.