1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
3 years ago
6

3. Two bullets have masses of 0.003 kg and 0.006 kg, respectively. Both are fired with a speed of 40.0 m/s.

Physics
1 answer:
Novay_Z [31]3 years ago
6 0

Answer:

A. The bullet with 0.006kg has more energy

B. When the mass is doubled the kinetic energy increases

Explanation:

Kinetic energy increases when mass increases

kinetic energy increases when velocity increases

You might be interested in
Which of these best explains why people on Earth cannot see the entire shape of the Milky Way
BartSMP [9]
I believe the answer is A.

Since the Earth is in the Milky Way and not outside it, we cannot see the exact shape of it. Physicists have been able to track and graph the movements of the planets accurately for thousands of years, but that does not mean we know the shape of the entire solar system.<span />
5 0
3 years ago
A 5.0 kg block hangs from the ceiling by a mass-less rope. A Second block with a mass of 10.0 kg is attached to the first block
gayaneshka [121]

The tension in the first and second rope are; 147 Newton and 98 Newton respectively.

Given the data in the question

  • Mass of first block; m_1 = 5.0kg
  • Mass of second block, m_2 =10kg
  • Tension on first rope; T_1 =\ ?
  • Tension on second rope; T_2 =\ ?

To find the Tension in each of the ropes, we make use of the equation from Newton's Second Laws of Motion:

F = m\ *\ a

Where F is the force, m is the mass of the object and a is the acceleration ( In this case the block is under gravity. Hence ''a" becomes acceleration due to gravity  g = 9.8m/s^2 )

For the First Rope

Total mass hanging on it; m_T = m_1 + m_2 = 5.0kg + 10.0kg = 15.0kg

So Tension of the rope;

F = m\ * \ g\\\\F = 15.0kg \ * 9.8m/s^2\\\\F = 147 kg.m/s^2\\\\F = 147N

Therefore, the tension in the first rope is 147 Newton

For the Second Rope

Since only the block of mass 10kg is hang from the second, the tension in the second rope will be;

F = m\ * \ g\\\\F = 10.0kg \ * 9.8m/s^2\\\\F = 98 kg.m/s^2\\\\F = 98N

Therefore, the tension in the second rope is 98 Newton

Learn More, brainly.com/question/18288215

4 0
2 years ago
Read 2 more answers
A concert loudspeaker suspended high off the ground emits 34 W of sound power. A small microphone with a 1.0 cm2 area is 44 m fr
rjkz [21]

Answer:

<u>Part A</u>

I = 1.4 mW/m²  

<u>Part B</u>

β = 91.46 dB

Explanation:

<u>Part A</u>

Sound intensity is the power per unit area of sound waves in a direction perpendicular to that area. Sound intensity is also called acoustic intensity.

For a spherical sound wave, the sound intensity is given by;

                                            I = \frac{P}{A}

                                            I = \frac{P}{4\pi r^{2}}

Where;

P is the source of power in watts (W)

I is the intensity of the sound in watt per square meter (W/m2)

r is the distance r away

Given:

P = 34 W,

A = 1.0 cm²

r = 44 m

The sound intensity at the position of the microphone is calculated to be;

                                     I = \frac{34}{4\pi (44)^{2}}

                                     I = \frac{34}{4\pi (44)^{2}}

                                     I = 0.0013975 W/m²

                                 ≈  I = 0.0014 W/m² = 1.4 × 10⁻³ W/m²

                                     I = 1.4 mW/m²

The sound intensity at the position of the microphone is 1.4 mW/m².

<u>Part B</u>

Sound intensity level or acoustic intensity level is the level of the intensity of a sound relative to a reference value.  It is a a logarithmic quantity. It is denoted by β and expressed in nepers, bels, or decibels.

Sound intensity level is calculated as;  

                                    β = 10log_{10}\frac{I}{I_{0}}  dB

Where,

β is the Sound intensity level in decibels (dB)

I is the sound intensity;

I₀ is the reference sound intensity;

By pluging-in, I₀ is 1.0 × 10⁻¹² W/m²

           ∴        β = 10log_{10}\frac{1.4 * 10^{-3} W/m^{2}}{1.0 * 10^{-12} W/m^{2}}

                      β = 10log_{10} (1.4 * 10^{9})

                      β = 91.46 dB

The sound intensity level at the position of the microphone is 91.46 dB.                

4 0
3 years ago
Which of the following is a correct definition of radiant energy?
ValentinkaMS [17]
Radiant energy is the energy of electromagnetic and gravitational radiation
6 0
3 years ago
Read 2 more answers
If you're studying the science of sound, you're studying____?
timurjin [86]
The study of sound is called sonics and the study of sound waves are acoustics
3 0
3 years ago
Other questions:
  • A continental tropical air mass is _______ and _______.
    8·1 answer
  • If a 75 W lightbulb operates at a voltage of 120 V, what is the current in the
    10·1 answer
  • Which part of an atom carries a negative charge?
    10·1 answer
  • Imagine you had a bar of gold and decided to cut in half. You repeated this
    14·1 answer
  • Where do objects becomes weightless and why?
    13·2 answers
  • Images at home that represent conduction convection and radiation
    6·1 answer
  • A sound wave has a speed of
    6·1 answer
  • What is the current flowing through a 10 resistor in a parallel circuit with a 120 V potential difference across it?
    13·2 answers
  • hii, just wondering how to solve this? it’s simple scientific notation but my brain just isn’t functioning today so it’s be help
    8·1 answer
  • What is the purpose of the antireflective coating on the glass layer of a solar
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!