1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
podryga [215]
3 years ago
5

An object of mass m is initially at rest. After a force of magnitude F acts on it for a time T, the object has a speed v. Suppos

e the mass of the object is doubled, and the magnitude of the force acting on it is quadrupled.In terms of T, how long does it take for the object to accelerate from rest to a speed v now?
Physics
1 answer:
adell [148]3 years ago
5 0

Answer:

It takes \frac{1}{2}T to accelerate the object from rest to the speed v.

Explanation:

From Newton's second law:

F=m\cdot a  (1)

and the definition of acceleration,

\displaystyle{a = \frac{\Delta v}{\Delta t}} (2)

we can solve this problem. Putting (2) in (1) we have:

\displaystyle{F = m\cdot \frac{\Delta v}{\Delta t}} and solving for \Delta t and considering the initial time as zero (t_0=0) and the initial velocity also zero (v_0=0) we have:

\displaystyle{T=\frac{mv}{F}}

Now, for a mass m^*= 2m and the F^*=4F we can wrtie the same equation:

\displaystyle{T^*=\frac{m^*v}{F^*}} and substituting m^* and F^*:

\displaystyle{T^*=\frac{2m\cdotv}{4F}=\frac{2}{4}T=\boxed{\frac{1}{2}T}}

So now, it only takes half the time to accelerate the object from rest to the speed v

You might be interested in
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
If a train is 100 kilometers away, how much sooner would you hear the train coming by listening to the rails (iron) as opposed t
Whitepunk [10]
From tables, the speed of sound at 0°C is approximately
V₁ = 331 m/s (in air)
V₃ = 5130 m/s (in iron)

Distance traveled is
d = 100 km = 10⁵ m

Time required to travel in air is
t₁ = d/V₁ = 10⁵/331 = 302.12 s

Time required to travel in iron is
t₂ = d/V₂ = 10⁵/5130 = 19.49 s

The difference in time is
302.12 - 19.49 = 282.63 s

Answer:  283 s (nearest second)



6 0
3 years ago
What do you need to calculate the mechanical advantage of a block and tackle
Ira Lisetskai [31]
In a block and tackle, some friction in the pulleys will reduce the mechanical advantage of the machine. To include friction in a calculation of the mechanical advantage of a block and tackle, divide the weight of the object being lifted by the weight necessary to lift it.

Hope this helps
7 0
3 years ago
Read 2 more answers
You apply a potential difference of 5.70 v between the ends of a wire that is 2.90 m in length and 0.654 mm in radius. the resul
photoshop1234 [79]
1) First of all, let's find the resistance of the wire by using Ohm's law:
V=IR
where V is the potential difference applied on the wire, I the current and R the resistance. For the resistor in the problem we have:
R= \frac{V}{I}= \frac{5.70 V}{17.6 A}=0.32 \Omega

2) Now that we have the value of the resistance, we can find the resistivity of the wire \rho by using the following relationship:
\rho =  \frac{RA}{L}
Where A is the cross-sectional area of the wire and L its length.
We already have its length L=2.90 m, while we need to calculate the area A starting from the radius:
A=\pi r^2 = \pi (0.654\cdot 10^{-3}m)^2=1.34 \cdot 10^{-6}m^2

And now we can find the resistivity:
\rho =  \frac{RA}{L}= \frac{(0.32 \Omega)(1.34 \cdot 10^{-6}m^2)}{2.90m}=  1.48 \cdot 10^{-7}\Omega \cdot m
7 0
4 years ago
What side of the worm faces up when placed in the tray when dissection?
Lelechka [254]

<span>The side of the worm that faces up when placed in the tray for dissection is the smoother side.

</span>You can observe the organs of these tiny creatures by dissecting a preserved earthworm<span>. In dissecting a worm, </span><span>lay the worm on your </span>dissecting tray<span> <span>with its dorsal side facing up.</span></span>

8 0
3 years ago
Other questions:
  • The battery for a certain cell phone is rated at 3.70 V. According to the manufacturer it can produce math]3.15 \times 10^{4} J[
    9·1 answer
  • You are instructed to remove the appendicular skeleton of a cadaver. To accomplish this goal, you would
    9·1 answer
  • Which equations represent the relationship between wavelength and frequency for a sound wave? Check all that apply.
    11·1 answer
  • Part of the solar radiation entering the atmosphere about ___ actually reaches the earth's surface
    6·1 answer
  • the mass of one water drop is 0.0008kg and the gravitational field strength is 10N/kg what is its weight
    7·1 answer
  • Feeling slightly uncomfortable during exercise
    12·1 answer
  • Which of these is NOT a line on the tennis court?
    10·2 answers
  • Ball A, moving towards the right, collides with
    9·1 answer
  • A Christmas light is made to flash via the discharge of a capacitor. The effective duration of the flash is 0.25 s (which you ca
    5·1 answer
  • What is the Atomic Mass / Weight for silver? *Round your answer to the nearest whole number
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!