During either one, the sun, moon, and Earth are lined up in the same straight line. The difference is whether the moon or the Earth is the one in the "middle".
Answer:
t = 3.516 s
Explanation:
The most useful kinematic formula would be the velocity of the motorcylce as a function of time, which is:

Where v_0 is the initial velocity and a is the acceleration. However the problem states that the motorcyle start at rest therefore v_0 = 0
If we want to know the time it takes to achieve that speed, we first need to convert units from km/h to m/s.
This can be done knowing that
1 km = 1000 m
1 h = 3600 s
Therefore
1 km/h = (1000/3600) m/s = 0.2777... m/s
100 km/h = 27.777... m/s
Now we are looking for the time t, for which v(t) = 27.77 m/s. That is:
27.777 m/s = 7.9 m/s^2 t
Solving for t
t = (27.7777 / 7.9) s = 3.516 s
The 'net' force acting on the box is (9 - 3) = 6 newtons
in the direction that Carlos is pushing.
Force = (mass) x (acceleration)
6 = (3) x (acceleration)
Divide each side by 3 :
<em>2 m/s² = acceleration</em>
By definition, acceleration is the change in velocity per change of time. As time passes by, the time increases in value. So, when the acceleration is decreasing while the time is increasing, then that means that the change of velocity is also decreasing with time. So, optimally, the initial velocity and the velocity at any time are very relatively close to each other,
Answer:
Therefore the the highest frequency is 620Hz and lowest frequency is 580Hz
Explanation:
Given data
Source Frequency fs=600Hz
Length r=1.0m
RPM=100 rpm
The speed of the generator is calculated as:

Substitute the given values

For approaching generator the frequency is calculated as:

On the other hand,for the receding generator,Doppler's effect is expressed as:

Therefore the the highest frequency is 620Hz and lowest frequency is 580Hz