card games
board games
bird watch
write a song
make a game
count stuff
throw a ball with someone
play outside
Answer:
5 years worth of work (aka all of the homework i currently have)
Answer:This also means that Mercury's surface gravity is 3.7 m/s2, which is the equivalent of 38% of Earth's gravity (0.38 g). This means that if you weighed 100 kg (220 lbs) on Earth, you would weigh 38 kg (84 lbs) on Mercury.
Explanation:
a. The risk of injury must be predictable.
b. A "breach of duty" is when a professional fails to uphold a level of care.
c. There must be a standard of care in place, and the practitioner must assume responsibility for the patient.
d. There must be a clear link between the treatment received and the harm.
<h3>What is malpractice?</h3>
Malpractice, commonly referred to as professional negligence, is defined as "an incident of carelessness or incompetence on the part of a professional" under tort law.
The following professionals might be the target of malpractice claims:
Medical professionals: If a doctor or other healthcare practitioner does not exercise the level of care and competence that a similarly situated professional in the same medical field would deliver under the circumstances, a medical malpractice claim may be made against them.
Lawyers: Failure to provide services with the amount of competence, care, and diligence that a reasonable lawyer would use in the same situation may be grounds for a legal malpractice claim.
To know more about malpractice, visit;
brainly.com/question/25441985
#SPJ4
Answer:

Explanation:
Given:
- cross sectional area of the wire,

- density of aluminium wire,

- young's modulus of the material,

- wave speed,

<u>We have mathematical expression for strain as:</u>
...............................(1)
and since, 
where, T = tension force in the wire
equation (1) becomes:
............................(2)
<u>Also velocity ofwave in tensed wire:</u>
...................................(3)
where:
linear mass density of the wire

Now, equation (3) becomes

............................(4)
Using eq. (2) & (4) for tension T


putting the respective values

