Answer:
Pebble A has 1/3 the acceleration as pebble B.
Explanation:
F = m×a
mass of a = 3 × mass of b (m_a = 3 × m_b)
Same starting force, F
m_a = mass of a
m_b = mass of b
a_a = acceleration of a
a_b = acceleration of b
F = m_a × a_a = m_b × a_b
3 × m_b × a_a = m_b × a_b
3 × a_a = a_b
OR
a_a = a_b / 3
Solution:
With reference to Fig. 1
Let 'x' be the distance from the wall
Then for
DAC:

⇒ 
Now for the
BAC:

⇒ 
Now, differentiating w.r.t x:
![\frac{d\theta }{dx} = \frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5Ctheta%20%7D%7Bdx%7D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Btan%5E%7B-1%7D%20%5Cfrac%7Bd%20%2B%20h%7D%7Bx%7D%20-%20%20tan%5E%7B-1%7D%20%5Cfrac%7Bd%7D%7Bx%7D%5D)
For maximum angle,
= 0
Now,
0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
0 = 

After solving the above eqn, we get
x = 
The observer should stand at a distance equal to x = 
Answer:
9V
Explanation:
The potential difference across the terminal as the same and thats because we are assuming that the source has no internal resistance.
Internal resistance are usually little resistances in the supply.
Is potential energy that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system
<h2>
Answer:</h2>
(a) 3.96 x 10⁵C
(b) 4.752 x 10⁶ J
<h2>
Explanation:</h2>
(a) The given charge (Q) is 110 A·h (ampere hour)
Converting this to A·s (ampere second) gives the number of coulombs the charge represents. This is done as follows;
=> Q = 110A·h
=> Q = 110 x 1A x 1h [1 hour = 3600 seconds]
=> Q = 110 x A x 3600s
=> Q = 396000A·s
=> Q = 3.96 x 10⁵A·s = 3.96 x 10⁵C
Therefore, the number of coulombs of charge is 3.96 x 10⁵C
(b) The energy (E) involved in the process is given by;
E = Q x V -----------------(i)
Where;
Q = magnitude of the charge = 3.96 x 10⁵C
V = electric potential = 12V
Substitute these values into equation (i) as follows;
E = 3.96 x 10⁵ x 12
E = 47.52 x 10⁵ J
E = 4.752 x 10⁶ J
Therefore, the amount of energy involved is 4.752 x 10⁶ J