A) We can use the equation of motion:
2as = v² - u²
s = (12² - (-6)²) / 2 x 4
s = 13.5 m
b) We calculate the time over which this displacement occurred using:
v = u + at
t = (12 - -6)/4
t = 4.5 seconds
Assuming the average speed equal to:
(12 + 6) /2 = 9 m/s
average speed = total distance/total time
total distance = 9 x 4.5
= 40.5 m
Recall the definitions of
• average velocity:
v[ave] = ∆x/∆t = (x[final] - x[initial])/t
Take the initial position to be the origin, so x[initial] = 0, and we simply write x[final] = s. So
v[ave] = s/t
• average acceleration:
a[ave] = ∆v/∆t = (v[final] - v[initial])/t
Assume acceleration is constant (a[ave] = a). Let v[initial] = u and v[final] = v, so that
a = (v - u)/t
Under constant acceleration, the average velocity is also given by
v[ave] = (v[final] + v[initial])/2 = (v + u)/2
Then
v[ave] = s/t = (v + u)/2 ⇒ s = (v + u) t/2
and
a = (v - u)/t ⇒ v = u + at
so that
s = ((u + at) + u) t/2
s = (2u + at) t/2
s = ut + 1/2 at²
Explanation:
Newton's second law simply says that the net force on an object is equal to the object's mass times its acceleration.
∑F = ma
For example, think of a game of tug-of-war, in which two teams pull on a rope in opposite directions.
If the forces are equal (balanced), then the net force is 0 N, so Newton's second law tells us that the rope's acceleration is 0 m/s².
If the forces are not equal (unbalanced), then the net force is not 0 N, and the rope will accelerate in the direction of the net force.
Answer:
2352645198509.9604 m/s²
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of black hole = 
= 10000+100 m
= Distance between the nose and the center of the black hole = 10000 m
The difference in the gravitational field in this system is given by

The acceleration is 2352645198509.9604 m/s²
Answer:
111.657596
Explanation:
The expression of volume is given by

Partially differentiating the term we get

m = 0.100

The partial molar volume of glucose is 111.657596