Answer:
The change of the volume of the device during this cooling is 
Explanation:
Given that,
Mass of oxygen = 10 g
Pressure = 20 kPa
Initial temperature = 110°C
Final temperature = 0°C
We need to calculate the change of the volume of the device during this cooling
Using formula of change volume


Put the value into the formula



Hence, The change of the volume of the device during this cooling is 
Answer:
time to fall is 3.914 seconds
Explanation:
given data
half distance time = 1.50 s
to find out
find the total time of its fall
solution
we consider here s is total distance
so equation of motion for distance
s = ut + 0.5 × at² .........1
here s is distance and u is initial speed that is 0 and a is acceleration due to gravity = 9.8 and t is time
so for last 1.5 sec distance is 0.5 of its distance so equation will be
0.5 s = 0 + 0.5 × (9.8) × ( t - 1.5)² ........................1
and
velocity will be
v = u + at
so velocity v = 0+ 9.8(t-1.5) ..................2
so first we find time
0.5 × (9.8) × ( t - 1.5)² = 9.8(t-1.5) + 0.5 ( 9.8)
solve and we get t
t = 3.37 s
so time to fall is 3.914 seconds
From convection of magma under the earths crust makes the plates slowly move and as they move over time they build up potential energy from the different plates grinding against each other and after so long the plates will lose there grip on each other and release the potential energy they've been building up for so long as kinetic energy causing what you know as an earthquake hope this helps please give brainliest
Answer:
6.5 m/s
Explanation:
We are given that
Distance, s=100 m
Initial speed, u=1.4 m/s
Acceleration, 
We have to find the final velocity at the end of the 100.0 m.
We know that

Using the formula






Hence, her final velocity at the end of the 100.0 m=6.5 m/s
Answer:
a) 
b) 
c) 
Explanation:
Given masses:


Velocity of mass 1, 
Velocity of mass 2, 
a)
Initial momentum:



b)
magnitude of initial momentum:


From the conservation of momentum:



is the magnitude of final velocity.
Direction of final velocity will be in the direction of momentum:




c)
Vertical component of final velocity:

