Answer:
Explanation:I don't say you must have to mark my ans as brainliest but if you think it has really helped u plz don't forget to thank me....
The pertinent equation here is F=ma. You haven't shared the mass of the box, so I will use M to represent that mass.
Then F = M(<span>2.3 m/s^2) (answer)</span>
The period of the transverse wave from what we have here is 0.5
<h3>How to find the period of the transverse wave</h3>
The period of a wave can be defined as the time that it would take for the wave to complete one complete vibrational cycle.
The formula with which to get the period is
w = 4π
where w = 4 x 22/7
2π/T = 4π
6.2857/T = 12.57
From here we would have to cross multiply
6.2857 = 12.57T
divide through by 12.57
6.2857/12.57 = T
0.500 = T
Hence we can conclude that the value of T that can determine the period based on the question is 0.500.
Read more on transverse wave here
brainly.com/question/2516098
#SPJ4
The gravitational force <em>F</em> between two masses <em>M</em> and <em>m</em> a distance <em>r</em> apart is
<em>F</em> = <em>G M m</em> / <em>r</em> ²
Decrease the distance by a factor of 7 by replacing <em>r</em> with <em>r</em> / 7, and decrease both masses by a factor of 8 by replacing <em>M</em> and <em>m</em> with <em>M</em> / 8 and <em>m</em> / 8, respectively. Then the new force <em>F*</em> is
<em>F*</em> = <em>G </em>(<em>M</em> / 8) (<em>m</em> / 8) / (<em>r</em> / 7)²
<em>F*</em> = (1/64 × <em>G M m</em>) / (1/49 × <em>r</em> ²)
<em>F*</em> = 49/64 × <em>G M m</em> / <em>r</em> ²
In other words, the new force is scaled down by a factor of 49/64 ≈ 0.7656, so the new force has magnitude approx. 76.56 N.