Explanation:
It is given that,
Speed of the ball, v = 10 m/s
Initial position of ball above ground, h = 20 m
(a) Let H is the maximum height reached by the ball. It can be calculated using the conservation of energy as :


h' = 5.1 m
The maximum height above ground,
H = 5.1 + 20
H = 25.1 meters
So, the maximum height reached by the ball is 25.1 meters.
(b) The ball's speed as it passes the window on its way down is same as the initial speed i.e. 10 m/s.
Hence, this is the required solution.
Answer: 
Explanation:
According to Newton's law of universal gravitation:
Where:
is the module of the force exerted between both bodies
is the universal gravitation constant.
and
are the masses of both bodies.
is the distance between both bodies
In this case we have two situations:
1) Two bags with masses
and
mutually exerting a gravitational attraction
on each other:
(1)
(2)
(3)
2) Two bags with masses
and
mutually exerting a gravitational attraction
on each other (assuming the distance between both bags is the same as situation 1):
(4)
(5)
(6)
Now, if we isolate
from (3):
(7)
Substituting
found in (7) in (6):
(8)
(9)
Simplifying, we finally get the expression for
in terms of
:
Metalloids are all solid at room temperature. Some metalloids, such as silicon and germanium, can act as electrical conductors under the right conditions, thus they are called semi-conductors. Silicon for example appears lustrous, but is not malleable or ductile (it is brittle - a characteristic of some nonmetals).
Read more on Brainly.com -
brainly.com/question/6662487#readmoreHope that helped!
:)
Answer:
The pressure is 
Explanation:
From the question we are told that
The initial pressure is 
The temperature is 
Let the first volume be
Then the final volume will be 
Generally for a diatomic gas

Here r is the radius of the molecules which is mathematically represented as

Where
are the molar specific heat of a gas at constant pressure and the molar specific heat of a gas at constant volume with values

=> 
=> 
=> ![P_2 = [\frac{1}{2} ]^{\frac{7}{5} } * 11.2](https://tex.z-dn.net/?f=P_2%20%20%3D%20%20%5B%5Cfrac%7B1%7D%7B2%7D%20%5D%5E%7B%5Cfrac%7B7%7D%7B5%7D%20%7D%20%2A%2011.2)
=> 