The answer is D. Electric resistance increases with an increase in the length of a wire and as a result current flow decreases. There is a direct relationship between the length of the wire and the resistance. The longer the wire, the more resistance there will be. Additionally, from Ohm's Law, current is inversely proportional to resistance. This means as the current increases, resistance decreases or vice versa.
Answer:
84.82N/C.
Explanation:
The x-components of the electric field cancel; therefore, we only care about the y-components.
The y-component of the differential electric field at the center is
.
Now, let us call
the charge per unit length, then we know that
;
therefore,


Integrating

![$E = \frac{k \lambda }{R}*[-cos(\pi )+cos(0) ]$](https://tex.z-dn.net/?f=%24E%20%3D%20%5Cfrac%7Bk%20%5Clambda%20%20%20%7D%7BR%7D%2A%5B-cos%28%5Cpi%20%29%2Bcos%280%29%20%5D%24)

Now, we know that


and the radius of the semicircle is

therefore,


<span> The masses have no inertia about their own CM, and "the object" is the two masses. </span>
<span>1. Icm (at point A) = 2mr^2
hope this helps</span>
Answer:
Explanation:
We shall represent each displacement in vector form .
i will represent east , j will represent north .
D₁ = 4.1 west = - 4.1 i
D₂ = 17.3 north = 17.3 j
D₃ = - 1.2 cos65.4 i + 1.2 sin65.4 j
= - .5 i + 1.09 j
Total displacement
= D₁ + D₂ + D₃
= - 4.1 i + 17.3 j - .5 i + 1.09 j
D = - 4.6 i + 18.39 j
magnitude of D
= √ ( 4.6² + 18.39² )
= √ (21.16 + 338.2 )
= √359.36
= 18.95 km .
Final displacement = 18.95 km .