From tables, the speed of sound at 0°C is approximately
V₁ = 331 m/s (in air)
V₃ = 5130 m/s (in iron)
Distance traveled is
d = 100 km = 10⁵ m
Time required to travel in air is
t₁ = d/V₁ = 10⁵/331 = 302.12 s
Time required to travel in iron is
t₂ = d/V₂ = 10⁵/5130 = 19.49 s
The difference in time is
302.12 - 19.49 = 282.63 s
Answer: 283 s (nearest second)
The answer of a & b are force of cohesion and force of adhesion
Of rest two answers I don't know
Answer:
the answer the correct one is c
Explanation:
Electric charges of different signs attract and those of the same sign repel. In addition, there are two types of insulating bodies, where the loads are fixed (immobile) and metallic (with mobile loads.
Let's analyze the situation presented
* A rod with positive approaches and the sphere is attracted, so the charge on the sphere is negative
* A rod with a negative charge approaches and the sphere is attracted, therefore the charge of the sphere must be positive.
For this to happen, the sphere must be unloaded and the charge that creates the phenomenon are induced charges because the mobile charges of the same sign as the sphere are repelled.
when checking the answer the correct one is c
Answer:
5.49×10⁻⁴ lbm
Explanation:
Convert volume to m³.
V = (200 cm³) (1 m / 100 cm)³ = 0.0002 m³
Find mass in kg.
m = ρV
m = (1.24507 kg/m³) (0.0002 m³)
m = 0.000249 kg
Convert mass to lbm.
m = (0.000249 kg) (2.205 lbm/kg)
m = 0.000549 lbm
m = 5.49×10⁻⁴ lbm