Answer:
Kc = 3.90
Explanation:
CO reacts with
to form
and
. balanced reaction is:

No. of moles of CO = 0.800 mol
No. of moles of
= 2.40 mol
Volume = 8.00 L
Concentration = 
Concentration of CO = 
Concentration of
= 

Initial 0.100 0.300 0 0
equi. 0.100 -x 0.300 - 3x x x
It is given that,
at equilibrium
= 0.309/8.00 = 0.0386 M
So, at equilibrium CO = 0.100 - 0.0386 = 0.0614 M
At equilibrium
= 0.300 - 0.0386 × 3 = 0.184 M
At equilibrium
= 0.0386 M
![Kc=\frac{[H_2O][CH_4]}{[CO][H_2]^3}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH_2O%5D%5BCH_4%5D%7D%7B%5BCO%5D%5BH_2%5D%5E3%7D)

Answer:
19.4 g of alum, will be its theoretical yield
Explanation:
The reaction is:
2 Al + 2 KOH + 4 H₂SO₄ + 22H₂O → 3H₂ + 2KAl(SO₄)₂•12H₂O
Let's determine the amount of acid.
M are the moles contained in 1 L of solution or it can be mmoles that are contained in 1 mL of solution
M = mmol /mL
M . mL = mmol
We replace: 8.3 mL . 9.9 M = 82.17 mmoles
We convert to moles: 82.17 mmol . 1 mol / 1000mmol = 0.082 moles
Ratio is 4:2
4 moles of sulfuric acid can make 2 moles of alum
By the way, 0.082 moles of acid may produce ( 0.082 . 2) /4 = 0.041085 moles.
We convert moles to mass:
Molar mass of alum is: 473.52 g/mol.
0.041085 moles . 473.52 g/mol = 19.4 g
Answer:
I believe it's the lowest portion of the atmosphere
The absolute temperature of a gas is directly related to average molecular kinetic Energy law.