The valence electrons increase as you move left to right.
Answer:
She is likely to crash because her flight gradient is lesser than the flight gradient required gradient to avoid crashing
Explanation:
The given parameters are;
The required gradient of the plane Ashley is flying needs to reach in order to take off and not crash = 360 m/km
The initial elevation of the plane Ashley is flying = Sea level = 0 m
The goal Ashley intends to make = Elevation of 1000 m at 2.8 km. distance
∴ Ashley's goal = Traveling from sea level to 1000 m at 2.8 km horizontal distance
We have;
The gradient = Rate of change of elevation/(Horizontal distance)
Therefore;
The gradient of Ashley's flight = (1000 - 0)/(2.8 - 0) = 357.143 m/km
The gradient of Ashley's flight ≈ 357.143 m/km which is lesser than the required 360 m/km in order to take off and not crash, therefore, she will crash.
Answer:
Linear and rotational Kinetic Energy + Gravitational potential energy
Explanation:
The ball rolls off a tall roof and starts falling.
Let us first consider the potential energy or more specifically gravitational potential energy (
;
= mass of the ball,
= acceleration due to gravity,
= height of the roof). This energy comes because someone or something had to do work to take the ball to the top of the roof against the force of gravity. The potential energy is naturally maximum at the top and minimum when the ball finally reaches the ground.
Now, the ball starts to roll and falls off the roof. It shall continue rotating because of inertia (Newton's first law). This contributes to the rotational kinetic energy (
;
=moment of inertia of the ball &
= angular velocity).
Finally comes the linear kinetic energy or simply, kinetic energy (
) which is caused due to the velocity
of the ball.