You can write the equation in 3 different ways, depending on which quantity you want to be the dependent variable. Any one of the three forms can be derived from either of the other two with a simple algebra operation. They're all the same relationship, described by "Ohm's Law".
==> Current = (potential difference) / (resistance)
==> Potential difference = (current) x (resistance)
==> Resistance = (potential difference) / (resistance)
Answer:
1,85 m / s²
Explanation:
De la pregunta anterior, se obtuvieron los siguientes datos:
Velocidad inicial (u) = 40 km / h
Hora inicial (t₁) = 0
Tiempo final (t₂) = 6 s
Velocidad final (v) = 0
Aceleración (a) =?
A continuación, convertiremos 40 km / ha m / s. Esto se puede obtener de la siguiente manera:
1 km / h = 0,2778 m / s
Por lo tanto,
40 km / h = 40 km / h × 0,2778 m / s / 1 km / h
40 km / h = 11,11 m / s
Por tanto, 40 km / h equivalen a 11,11 m / s.
Finalmente, determinaremos la aceleración del móvil durante el período en el que desaceleró. Esto se puede obtener de la siguiente manera:
Velocidad inicial (u) = 11,11 m / s
Hora inicial (t₁) = 0
Tiempo final (t₂) = 6 s
Velocidad final (v) = 0
Aceleración (a) =?
a = (v - u) / (t₂ - t₁)
a = (0 - 11,11) / (6 - 0)
a = - 11,11 / 6
a = –1,85 m / s²
Por tanto, la aceleración del móvil durante el período en el que se ralentizó es de –1,85 m / s²
a.
The work done by a constant force along a rectilinear motion when the force and the displacement vector are not colinear is given by:

where F is the magnitude of the force, theta is the angle between them and d is the distance.
The problen gives the following data:
The magnitude of the force 750 N.
The angle between the force and the displacement which is 25°
The distance, 26 m.
Plugging this in the formula we have:

Therefore the work done is 17673 J.
b)
The power is given by:

the problem states that the time it takes is 6 s. Then:

Therefore the power is 2945.5 W
Answer:
-8.4°C
Explanation:
From the principle of heat capacity.
The heat sustain by an object is given as;
H = m× c× (T2-T1)
Where H is heat transferred
m is mass of substance
T2-T1 is the temperature change from starting to final temperature T2.
c- is the specific heat capacity of ice .
Note : specific heat capacity is an intrinsic capacity of a substance which is the energy substained on a unit mass of a substance on a unit temperature change.
Hence ; 35= 1× c× ( T2-(-25))
35= c× ( T2+25)
35 =2.108×( T2+25)
( T2+25)= 35/2.108= 16.60°{ approximated to 2 decimal place}
T2= 16.60-25= -8.40°C
C, specific heat capacity of ice is =2.108 kJ/kgK{you can google that}
Answer:
How high the sound or how low the sound is depending on the pitch of the sound which in this case the frequencies of the sound. The higher of the frequencies , the higher of the pitch but it has the shortest length of wave (λ). That's why AM radio have a longer range but bad audio quality than FM radio that have better audio quality with shorter range.