Answer:
what's the question exactly because what you said was true but what's the question
Consider a car<span> that travels between points A and B. The </span>car's<span> average </span>speed<span> can be ..... the </span>car<span> to </span>slow down<span> with a </span>constant acceleration<span> of </span>magnitude 3.50 m/s2<span>. </span>If<span> the </span>car comes<span> to a </span>stop<span> in a </span>distance<span> of</span>30.0 m<span>, what was the </span>car's original speed<span>? ... A </span>car<span> is </span>traveling<span> at 26.0 </span>m<span>/s when the </span>driver suddenly applies<span> the </span>brakes<span>, ...</span>
Hello!
Possible answer could be Organisms
There are a lot of Organisms in the overall food chain.
Hope this helped!
Answers:
a) -2.54 m/s
b) -2351.25 J
Explanation:
This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first football player
is the velocity of the first football player (to the south)
is the mass of the second football player
is the velocity of the second football player (to the north)
is the final velocity of both football players
With this in mind, let's begin with the answers:
a) Velocity of the players just after the tackle
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
(7) The negative sign indicates the direction of the final velocity, to the south
b) Decrease in kinetic energy of the 110kg player
The change in Kinetic energy
is defined as:
(8)
Simplifying:
(9)
(10)
Finally:
(10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision
According to the Jefferson lab, "The scientific definition of work is: using a force to move an object a distance (when both the force and the motion of the object are in the same direction.)"