1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad [161]
3 years ago
12

(1) Predator-prey is the most important type of ecological relationship.

Physics
1 answer:
DIA [1.3K]3 years ago
4 0
1) True 2) True 3)True I hope I helped
You might be interested in
Concept Simulation 20.4 provides background for this problem and gives you the opportunity to verify your answer graphically. Ho
77julia77 [94]

Answer:

The time constant is 1.049.

Explanation:

Given that,

Charge q{t}= 0.65 q_{0}

We need to calculate the time constant

Using expression for charging in a RC circuit

q(t)=q_{0}[1-e^{-(\dfrac{t}{RC})}]

Where, \dfrac{t}{RC} = time constant

Put the value into the formula

0.65q_{0}=q_{0}[1-e^{-(\dfrac{t}{RC})}]

1-e^{-(\dfrac{t}{RC})}=0.65

e^{-(\dfrac{t}{RC})}=0.35

-\dfrac{t}{RC}=ln (0.35)

-\dfrac{t}{RC}=-1.049

\dfrac{t}{RC}=1.049

Hence, The time constant is 1.049.

6 0
3 years ago
Calculate the orbital period of a dwarf planet found to have a semimajor axis of a = 4.0x 10^12 meters in seconds and years.
padilas [110]

Explanation:

We have,

Semimajor axis is 4\times 10^{12}\ m

It is required to find the orbital period of a dwarf planet. Let T is time period. The relation between the time period and the semi major axis is given by Kepler's third law. Its mathematical form is given by :

T^2=\dfrac{4\pi ^2}{GM}a^3

G is universal gravitational constant

M is solar mass

Plugging all the values,

T^2=\dfrac{4\pi ^2}{6.67\times 10^{-11}\times 1.98\times 10^{30}}\times (4\times 10^{12})^3\\\\T=\sqrt{\dfrac{4\pi^{2}}{6.67\times10^{-11}\times1.98\times10^{30}}\times(4\times10^{12})^{3}}\\\\T=4.37\times 10^9\ s

Since,

1\ s=3.17\times 10^{-8}\ \text{years}\\\\4.37\times 10^9\ s=4.37\cdot10^{9}\cdot3.17\cdot10^{-8}\\\\4.37\times 10^9\ s=138.52\ \text{years}

So, the orbital period of a dwarf planet is 138.52 years.

3 0
3 years ago
A steady beam of alpha particles (q = + 2e, mass m = 6.68 × 10-27 kg) traveling with constant kinetic energy 22 MeV carries a cu
cluponka [151]

Answer:

Explanation:

q = 2e = 3.2 x 10^-19 C

mass, m = 6.68 x 10^-27 kg

Kinetic energy, K = 22 MeV

Current, i = 0.27 micro Ampere = 0.27 x 10^-6 A

(a) time, t = 2.8 s

Let N be the alpha particles strike the surface.

N x 2e = q

N x 3.2 x 10^-19 = i t

N x 3.2 x 10^-19 = 0.27 x 10^-6 x 2.8

N = 2.36 x 10^12

(b) Length, L = 16 cm = 0.16 m

Let N be the alpha particles

K = 0.5 x mv²

22 x 1.6 x 10^-13 = 0.5 x 6.68 x 10^-27 x v²

v² = 1.054 x 10^15

v = 3.25 x 10^7 m/s

So, N x 2e = i x t

N x 2e = i x L / v

N x 3.2 x 10^-19 = 2.7 x 10^-7 x 0.16 / (3.25 x 10^7)

N = 4153.85

(c) Us ethe conservation of energy

Kinetic energy = Potential energy

K = q x V

22 x 1.6 x 10^-13 = 2 x 1.5 x 10^-19 x V

V = 1.17 x 10^7 V

5 0
3 years ago
The diagram shows a wave traveling through a medium.
m_a_m_a [10]
The answer is b. The crest.

Hope this helps!
6 0
3 years ago
Read 2 more answers
A 3.00N rock is thrown vertically into the air from the ground. At h=15.0m, v=25m/s upward. Use the work-energy theorem to find
butalik [34]

Answer:

so initial speed of the rock is 30.32 m/s

correct answer is b. 30.3 m/s

Explanation:

given data

h = 15.0m

v = 25m/s

weight of the rock m = 3.00N  

solution

we use here work-energy theorem that is express as here

work = change in the kinetic energy    ..............................1

so it can be written as

work = force × distance     ...................2

and

KE is express as

K.E = 0.5 × m × v²  

and it can be written as

F × d = 0.5 × m × (vf)² - (vi)²      ......................3

here

m is mass and vi and vf is initial and final velocity

F = mg = m  (-9.8)  , d = 15 m and v{f} = 25 m/s

so put value in equation 3 we get

m  (-9.8) × 15 = 0.5 × m × (25)² - (vi)²

solve it we get

(vi)² =  919

vi = 30.32 m/s

so initial speed of the rock is 30.32 m/s

5 0
4 years ago
Other questions:
  • Which of these is NOT a type of lever?<br> A. rake<br> B. ramp<br> C. crowbar<br> D. scissors
    7·2 answers
  • a bird has a mass of 0.2kg and is flying 10m above the ground with a speed of 7 m/s.What is the total mechanical energy of the b
    13·1 answer
  • Pain in the pleura
    12·2 answers
  • A coil of 160 turns and area 0.20 m2 is placed with its axis parallel to a magnetic field of initial magnitude 0.40 T. The magne
    6·1 answer
  • Describe the electron transfers that occur in the formation of calcium fluoride from elemental calcium and elemental fluorine.
    9·1 answer
  • I need a science fair project that doesn't need anything on the pic and it can be about any subject thanks.
    7·1 answer
  • Can density be used to identify what a substance is made of?
    5·1 answer
  • Which of these statements describes experiences or feelings related to anxiety?
    7·2 answers
  • A fighter jet travels 10km at an angle of 30 degrees. He then turns sharply and flies 25 km at an angle of 75 degrees. What is t
    8·1 answer
  • If there is a 25 [lbs] of force acting on a 5 [lbs] of mass, what is the acceleration of that mass?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!