A Brønsted-Lowry base is a base is a proton acceptor.
In the only case where this is done is when HCO3- accepts a proton and becomes H2CO3.
In the other cases, HCO3- is donating a proton which makes it an acid.
<span>The question is asking us "Which of the following would be a result of increased solar activity?"
The Sun is extremely hot, and when it is warm on Earth, the heat has as it source in the Sun. Therefore, an increased solar activity would mean increased temperature on Earth - longer summers and shorter winters, and warmer sea temperatures. The best answer is :
B. Warmer-than-normal sea surface temperatures </span>
pH=6.98
Explanation:
This is a very interesting question because it tests your understanding of what it means to have a dynamic equilibrium going on in solution.
As you know, pure water undergoes self-ionization to form hydronium ions, H3O+, and hydroxide anions, OH−.
2H2O(l]⇌H3O+(aq]+OH−(aq]→ very important!
At room temperature, the value of water's ionization constant, KW, is equal to 10−14. This means that you have
KW=[H3O+]⋅[OH−]=10−14
Since the concentrations of hydronium and hydroxide ions are equal for pure water, you will have
[H3O+]=√10−14=10−7M
The pH of pure water will thus be
pH=−log([H3O+])
pH=−log(10−7)=7
Now, let's assume that you're working with a 1.0-L solution of pure water and you add some 10
A neutral atom of potassium has 19 electrons.