Answer:
403 mL
Explanation:
First, I will assume that the mole is 1, because you are not specifing this.
Now, with the innitial data, we need to get the pressure:
T = 65+273 = 338 K
V = 500 / 1000 = 0.5 L
Now if:
PV = nRT
Then:
P = nRT/V and V = nRT/P
Let's calculate the P:
P = 1 * 0.082 * 338 / 0.5 = 55.432 atm
The standard temperature is 0° C or 273 K so, the volume is:
V = 1 * 0.082 * 273 / 55.432
V = 0.40384 L or simply 403.84 mL
Answer:
N₂ = 0.7515atm
O₂ = 0.1715atm
NO = 0.0770atm
Explanation:
For the reaction:
N₂(g) + O₂(g) ⇄ 2NO(g)
Where Kp is defined as:
Pressures in equilibrium are:
N₂ = 0.790atm - X
O₂ = 0.210atm - X
NO = 2X
Replacing in Kp:
0.0460 = [2X]² / [0.790atm - X] [0.210atm - X]
0.0460 = 4X² / 0.1659 - X + X²
0.0460X² - 0.0460X + 7.6314x10⁻³ = 4X²
-3.954X² - 0.0460X + 7.6314x10⁻³ = 0
Solving for X:
X = - 0.050 → False answer. There is no negative concentrations.
X = <em>0.0385 atm</em> → Right answer.
Replacing for pressures in equilibrium:
N₂ = 0.790atm - X = <em>0.7515atm</em>
O₂ = 0.210atm - X = <em>0.1715atm</em>
NO = 2X = <em>0.0770atm</em>