The fraction of energy that is lost is 25%, it depends how fast the ball was going until it lost 25% of its energy, the gravitational energy was transferred into the kinetic energy that helped the ball bounce back
Answer:
Object 3 has greatest acceleration.
Explanation:
Objects Mass Force
1 10 kg 4 N
2 100 grams 20 N
3 10 grams 4 N
4 1 kg 20 N
Acceleration of object 1,

Acceleration of object 2,

Acceleration of object 3,

Acceleration of object 4,

It is clear that the acceleration of object 3 is
and it is greatest of all. So, the correct option is (3).
Answer:
R2 = 300 Ohms
Explanation:
Let the two resistors be R1 and R2 respectively.
RT is the total equivalent resistance.
Given the following data;
R1 = 100 Ohms
RT = 75 Ohms
To find R2;
Mathematically, the total equivalent resistance of resistors connected in parallel is given by the formula;

Substituting into the formula, we have;

Cross-multiplying, we have;
75 * (100 + R2) = 100R2
7500 + 75R2 = 100R2
7500 = 100R2 - 75R2
7500 = 25R2
R2 = 7500/25
R2 = 300 Ohms
Answer: 576.48 N*m^2/C
Explanation: In order to calculate the electric flux through the any surface we have to take into account the scalar product between the electric field vector and the normal vector to the surface.
So we have:
ФE= E*A= 1.33 * 10^4*0.0518* cos (33.2°)= 576.48 N*m^2/C
Explanation:
I believe part of the question is missing. can you please check on it?
is there a part where the mass of the object is mentioned?