Answer:
C) Cardiovascular, muscular strength/power, muscular endurance
Explanation:
I did take the quiz
Answer:
the answer is B: earth takes to rotate once on its axis
Answer:
Part a)

Part b)

Part c)

Part d)
Net force on a closed loop in uniform magnetic field is always ZERO

Explanation:
As we know that force on a current carrying wire is given as

now we have
Part a)
current in side 166 cm and magnetic field is parallel
so we have

here we know that L and B is parallel to each other so

Part b)
For 68.1 cm length wire we have

here we know that


so we have


Part c)
For 151 cm length wire we have

here we know that


so we have


Part d)
Net force on a closed loop in uniform magnetic field is always ZERO

Most likely gravity, because the gravity would pull it off course or wobble.
(a) The free body of all the forces include, frictional force, weight of the box acting perpendicular and another acting parallel to the plane.
(b) When the box is sliding down, the frictional force acts towards the right.
(c) When the box slides up, the direction of the frictional force changes, it acts towards the left.
<h3>
Free body diagram</h3>
The free body diagram of all the forces on the box is obtained by noting the upward force and downward forces on the box as shown below;
/ W2
Ф → Ff
↓W1
where;
- Ff is the frictional force resisting the down motion of the box
- W1 is the perpendicular component of the box weight = Wcos(33)
- W2 is the parallel component of the box weight = Wsin(33)
(b) When the box is sliding down, the frictional force acts towards the right.
(c) When the box slides up, the direction of the frictional force changes, it acts towards the left.
Learn more about free body diagram of inclined objects here: brainly.com/question/4176810