Hey! How are you? My name is Maria, 19 years old. Yesterday broke up with a guy, looking for casual sex.
Write me here and I will give you my phone number - *pofsex.com*
My nickname - Lovely
Answer:
The west component of the given vector is - 42.548 meters.
Explanation:
We need to translate the sentence into a vectoral expression in rectangular form, which is defined as:

Where:
- Horizontal component of vector distance, measured in meters.
- Vertical component of vector distance, measured in meters.
Let suppose that east and north have positive signs, then we get the following expression:
![(x, y) = (-45\cdot \cos 19^{\circ}, -45\cdot \sin 19^{\circ})\,[m]](https://tex.z-dn.net/?f=%28x%2C%20y%29%20%3D%20%28-45%5Ccdot%20%5Ccos%2019%5E%7B%5Ccirc%7D%2C%20-45%5Ccdot%20%5Csin%2019%5E%7B%5Ccirc%7D%29%5C%2C%5Bm%5D)
![(x, y) = (-42.548,-14.651)\,[m]](https://tex.z-dn.net/?f=%28x%2C%20y%29%20%3D%20%28-42.548%2C-14.651%29%5C%2C%5Bm%5D)
The west component corresponds to the first component of the ordered pair. That is to say:

The west component of the given vector is - 42.548 meters.
Nowadays, most of the walkie talkies ... and all R/C models ... operate in the "Family Radio Service" (FRS) band. That's 46-49 MHz. The wavelength is 6.12-6.52 meters.
Answer:
Because the hiker walked directly west and then directly north the two legs of the hike forms a right triangle. Therefore we can use the Pythagorean Theorem to solve this problem.
c=5
The hiker is 5km from camp and should head in a generally south-east direction
Answer:
The arrow will bury itself farther by 3S₁
Explanation:
<u />
lets assume; the Arrow shot by me has a speed twice the speed of the arrow fired by the younger shooter
Given that ; acceleration is constant , Frictional force is constant
A₂ = A₁
Vf²₂ - Vi²₂ / 2s₂ = Vf₁² - Vi₁² / 2s₁ ---- ( 1 )
final velocities = 0
Initial velocities : Vi₂ = 2(Vi₁ )
Back to equation 1
0 - (2Vi₁ )² / 2s₂ = 0 - Vi₁² / 2s₁
hence :
s₂ = 4s₁
hence the Arrow shot by me will burry itself farther by :
s₂ - s₁ = 3s₁
<em>Note : S1 = distance travelled by the arrow shot by the younger shooter</em>