Answer:
d) What is the force if we doubled both the masses AND we doubled the distance
Answer:
M g H = 1/2 M v^2 potential energy = kinetic energy
v^2 = 2 g H = 2 * 9.80 * 6 = 117.6 m/s^2
v = 10.8 m/s
(C)
The light bulb would glow brighter.
<h3>What is Resistance?</h3>
a force that works against a body's direction of motion and seeks to stop or slow down motion, such as friction. a measure of how much a material prevents an electric current from flowing as a result of a voltage.
What is the law of resistance?
Resistance and Ohm's Law. According to Ohm's law, the resistance of the circuit and the current or energy travelling through the resistance are both exactly proportional to the voltage or potential difference between two places.
The current would grow since it is exactly proportionate to the voltage, increasing the light bulb's brilliance, or simply making it brighter.
to learn more about Resistance go to - brainly.com/question/15728236
#SPJ4
Answer:
The earth's gravitational force on the sun is equal to the sun's gravitational force on the earth
Explanation:
Newton's third law (law of action-reaction) states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In other words, when two objects exert a force on each other, then the magnitude of the two forces is the same (while the directions are opposite).
In this problem, we can call the Sun as "object A" and the Earth as "object B". According to Newton's third law, therefore, we can say that the gravitational force that the Earth exerts on the Sun is equal (in magnitude, and opposite in direction) to the gravitational force that the Sun exerts on the Earth.
Answer:
Option A = 1.
Explanation:
So, in order to solve this question we are given the Important infomation or data or parameters in the question above as;
(1). First, Both objects A and D represent fixed.
(2). Both objects A and D are negatively-charged particles of equal magnitude.
(3). "Object B represents a fixed, positively-charged particle (equal, but opposite charge from A and D)."
(4). "Object C shows a moving, positively-charged particle."
So, our mission is to determine the arrow that would correctly show the force of attraction or repulsion on object C caused by the other two objects.
We can do that by drawing out the forces of attraction and the resultants. Therefore, CHECK THE ATTACHED FILE/PICTURE FOR THE DRAWINGS.
The forces of attraction due to objects A and B on on object C will be towards themselves. Hence, the resultant is ONE(1).