1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina18 [472]
2 years ago
7

g A thin-walled hollow cylinder and a solid cylinder, both have same mass 2.0 kg and radius 20 cm, start rolling down from rest

at the top of an incline plane. The height of top of the incline plane is 1.2 m. Find translational speed of each cylinder upon reaching the bottom and determine which cylinder has the greatest translational speed upon reaching the bottom. Moment of inertia of hollow cylinder about its axis passing through the center is mr2 and for solid cylinder mr2/2
Physics
1 answer:
ArbitrLikvidat [17]2 years ago
3 0

Answer:

a. i. 3.43 m/s ii. 2.8 m/s

b. The thin-walled cylinder

Explanation:

a. Find translational speed of each cylinder upon reaching the bottom

The potential energy change of each mass = total kinetic energy gain = translational kinetic energy + rotational kinetic energy

So, mgh = 1/2mv² + 1/2Iω² where m = mass of object = 2.0 kg, g =acceleration due to gravity = 9.8 m/s², h = height of incline = 1.2 m, v = translational velocity of object, I = moment of inertia of object and ω = angular speed = v/r where r = radius of object.

i. translational speed of thin-walled cylinder upon reaching the bottom

So, For the thin-walled cylinder, I = mr², we find its translational velocity, v

So, mgh = 1/2mv² + 1/2Iω²

mgh = 1/2mv² + 1/2(mr²)(v/r)²  

mgh = 1/2mv² + 1/2mv²

mgh = mv²

v² = gh

v = √gh

v = √(9.8 m/s² × 1.2 m)

v = √(11.76 m²/s²)

v = 3.43 m/s

ii. translational speed of solid cylinder upon reaching the bottom

So, For the solid cylinder, I = mr²/2, we find its translational velocity, v'

So, mgh = 1/2mv'² + 1/2Iω²

mgh = 1/2mv² + 1/2(mr²/2)(v'/r)²  

mgh = 1/2mv'² + mv'²

mgh = 3mv'²/2

v'² = 2gh/3

v' = √(2gh/3)

v' = √(2 × 9.8 m/s² × 1.2 m/3)

v' = √(23.52 m²/s²/3)

v' = √(7.84 m²/s²)

v' = 2.8 m/s

b. Determine which cylinder has the greatest translational speed upon reaching the bottom.

Since v = 3.43 m/s > v'= 2.8 m/s,

the thin-walled cylinder has the greatest translational speed upon reaching the bottom.

You might be interested in
At sunset, red light travels horizontally through the doorway in the western wall of your beach cabin, and you observe the light
Nady [450]

Answer:

9.8\cdot 10^{-6}m

Explanation:

For light passing through a single slit, the position of the nth-minimum from the central bright fringe in the diffraction pattern is given by

y=\frac{n \lambda D}{d}

where

\lambda is the wavelength

D is the distance of the screen from the slit

d is the width of the slit

In this problem, we have

\lambda=700 nm = 7.00\cdot 10^{-7}m is the wavelength of the red light

D = 14 m is the distance of the screen from the doorway

d = 1.0 m is the width of the doorway

Substituting n=1 into the equation, we find the distance between the central bright fringe and the first-order dark fringe (the first minimum):

y=\frac{(1)(7.00\cdot 10^{-7} m)(14 m)}{1.0 m}=9.8\cdot 10^{-6}m

6 0
3 years ago
A driver averaged 64 mph and took 3½ hours to travel from st. Louis to chicago. Based on this, what is the distance between st.
sammy [17]

Average speed of the driver is given as

v = 64 mph

if he moved for total time t = 3.5 hours

so the distance between the tow is given as

d = v* t

d = 64 * 3.5

d = 224 miles

so the distance between St. Louis and Chicago is 224 miles

6 0
3 years ago
Does heat demagnetize?
Nastasia [14]

Answer:

Yes

Explanation:

Heat affects the magnets because it confuses and misaligns the magnetic domains, causing magnetism to decrease

3 0
2 years ago
.Golden Rice is an example of genetically modified organism. <br> true or false
MissTica

Answer:

True

Explanation:

Golden Rice is an example of genetically modified organism.

7 0
2 years ago
Read 2 more answers
An electric field of magnitude 2.35 V/m is oriented at an angle of 25.0° with respect to the positive z-direction. Determine the
zzz [600]

Answer:

The magnitude of the electric flux is 3.53\ N-m^2/C

Explanation:

Given that,

Electric field = 2.35 V/m

Angle = 25.0°

Area A= 1.65 m^2

We need to calculate the flux

Using formula of the magnetic flux

\phi=E\cdot A

\phi = EA\cos\theta

Where,

A = area

E = electric field

Put the value into the formula

\phi=2.35\times1.65\times\cos 25^{\circ}

\phi=2.35\times1.65\times0.91

\phi=3.53\ N-m^2/C

Hence, The magnitude of the electric flux is 3.53\ N-m^2/C

8 0
3 years ago
Other questions:
  • Calculate the density of a sample of gas with a mass of 30g and volume of 7500 cm3
    11·1 answer
  • Kirsin is learning about the outer planets what else would she know about a planet that is the second largest gas giant and has
    11·1 answer
  • All the actinoids, atomic number 89 through 103 have seven electron orbits.<br> True<br> False
    10·1 answer
  • Most of the bright stars in our galaxy are located in the galactic
    6·1 answer
  • Conservation of momentum
    6·1 answer
  • How much work is done lifting a 5 kg ball from a height of 2 m to a height of 6 m? (Use 10 m/s2 for the acceleration of gravity.
    7·1 answer
  • After the box comes to rest at position x1, a person starts pushing the box, giving it a speed v1. When the box reaches position
    11·1 answer
  • The model of the universe that the earth is in the center is called
    10·1 answer
  • Any girls come to talk on insta or here<br>​
    13·1 answer
  • The specification limits are 49 /- 3. Assume that the data is normally distributed! estimate process capability ratio’s (cp, cpk
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!