Answer:
Acceleration of the bullet will be 1778835.6
Explanation:
We have given length of the barrel refile s= 0.855 m
When the bullet leaves the muzzle its velocity is 553 m/sec
So final velocity v = 553 m/sec
Initial velocity will be 0 that is u = 0 m/sec
According to third equation of motion 


Answer:


Explanation:
the maximum speed is reached when the drag force and the weight are at equilibrium, therefore:




To calculate the velocity after 100 meters, we can no longer assume equilibrium, therefore:



(1)
consider the next equation of motion:

If assuming initial velocity=0:
(2)
joining (1) and (2):




(3)





To plot velocity as a function of distance, just plot equation (3).
To plot velocity as a function of time, you have to consider the next equation of motion:

as stated before, the initial velocity is 0:
(4)
joining (1) and (4) and reducing you will get:

solving for v:

Plots:
Mechanical or Electromagnetic
Answer:
0.143 m
Explanation:
The relationship between force applied on a string and stretching of the spring is given by Hooke's law:

where
F is the force exerted on the spring
k is the spring constant of the spring
x is the stretching of the spring from its equilibrium position
In this problem, we have:
F = 20 N is the force applied on the spring
k = 140 N/m is the spring constant
Solving for x, we find how far the spring will stretch:

B. The amount of pressure exerted by a solid is solely dependent on its mass
i just took the test