Answer:
18.63 N
Explanation:
Assuming that the sum of torques are equal
Στ = Iα
First wheel
Στ = 5 * 0.51 = 3 * (0.51)² * α
On making α subject of formula, we have
α = 2.55 / 0.7803
α = 3.27
If we make the α of each one equal to each other so that
5 / (3 * 0.51) = F2 / (3 * 1.9)
solve for F2 by making F2 the subject of the formula, we have
F2 = (3 * 1.9 * 5) / (3 * 0.51)
F2 = 28.5 / 1.53
F2 = 18.63 N
Therefore, the force F2 has to 18.63 N in order to impart the same angular acceleration to each wheel.
Answer:
True, the total amount of mechanical energy is merely the sum of the potential energy and the kinetic energy. This sum is simply referred to as the total mechanical energy.
Explanation: Hope it helps you:))))
have a good day
Their atomic number?? (easy guess)
Answer:
Approximately
, assuming friction between the vehicle and the ground is negligible.
Explanation:
Let
denote the mass of the vehicle. Let
denote the initial velocity of the vehicle. Let
denote the spring constant (needs to be found.) Let
denote the maximum displacement of the spring.
Convert velocity of the vehicle to standard units (meters per second):
.
Initial kinetic energy (
) of the vehicle:
.
When the vehicle is brought to a rest, the elastic potential energy (
) stored in the spring would be:
.
By the conservation of energy, if the friction between the vehicle and the ground is negligible, the initial
of the vehicle should be equal to the
of the vehicle. In other words:
.
Rearrange this equation to find an expression for
, the spring constant:
.
Substitute in the given values
,
, and
:
