Answer:
All the planets orbit the Sun in nearly the same plane.
Answer:
1. Motion
2. Empty space
3. Far apart
4. Independently
5. Random or rapid
6. Collision
7. Kinetic energy
8. Atmospheric
9. 273 Kelvin or 0° Celsius
10. 1 atm, 101.3 kPa or 760 mmHg
Explanation:
In science, matter can be defined as anything that has mass and occupies space. Any physical object that is found on earth is typically composed of matter. Matter are known to be made up of atoms and as a result has the property of existing in states.
Generally, matter exists in three (3) distinct or classical phases and these are;
I. Gas.
II. Solid.
III. Liquid.
Filling the missing words or texts in the question, we have;
The kinetic theory describes the motion of particles in matter and the forces of attraction between them. The theory assumes that the volume occupied by a gas is mostly empty space, that the particles of gas are relatively far apart, move independently of each other, and are in constant random or rapid motion. The collision between particles are perfectly elastic so that the total kinetic energy remains constant. Gas pressure results from the simultaneous collisions of billions of particles with an object. Barometers are used to measure atmospheric pressure. Standard conditions are defined as a temperature of 273 Kelvin or 0° Celsius and a pressure of 1 atm, 101.3 kPa or 760 mmHg.
Answer:
Up first are Mercury and Venus. Neither of them has a moon. Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.
<span>Recall formula for Kinetic energy is:
KE = 1/2mv^2, where KE = 275J
and momentum (which is 25.0 kg m/s) = m*v
Therefore substitute for KE and mv in the equation above to get speed
=> 275 = 0.5 * 25 * v
v = 275/12.5
v = 22m/s
to get mass m, recall momentum = m*v
=> 25= 22*m
m= 25/22 = 1.3663kg</span>
Answer:
Centripetal acceleration
Explanation:
- The centripetal acceleration is the motion inwards towards the center of a circular path.
- <em><u>Centripetal acceleration is given by; the square of the velocity, divided by the radius of the circular path.
</u></em>
ac = v²/r
Where; ac = acceleration, centripetal, m/s², v is the velocity, m/s and r is the radius, m