1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrej [43]
3 years ago
10

If, while standing on the bank of a stream, you wished to spear a fish swimming in the water out in front of you, would you aim

above, below, or directly at the observed fish to make a direct hit? If you decided to instead zap the fish with a laser, would you aim above, below, or directly at the observed fish? Defend your answers.
Physics
1 answer:
Serggg [28]3 years ago
3 0

Answer:

<em>a) below the observed position</em>

<em>b) directly at the observed position</em>

<em></em>

Explanation:

If I'm standing on the bank of a stream, and I wish to spear a fish swimming in the water out in front of me, I would aim below the observed fish to make a direct hit. This is because the phenomenon of refraction of light in water causes the light coming from the fish is refract away from the normal as it passes  into the air and into my eyes.

If I'm to zap the fish with a taser, I would aim directly at the observed fish because the laser (a form of concentrated light waves) will refract into the water, taking the same path the light from the fish took to get to my eyes.

You might be interested in
HELP ASAP WILL GIVE BRAINLIEST TO WHOEVER ANSWERS FIRST!!!!
SCORPION-xisa [38]

Answer:

B. Super-Positioned

Explanation:

7 0
3 years ago
Please Help!!!! I WILL GIVE BRAINLIEST!!!!!!!!!!!!!
Bas_tet [7]

Given info

d = 0.000250 meters = distance between slits

L = 302 cm = 0.302 meters = distance from slits to screen

\theta_8 = 1.12^{\circ} = angle to 8th max (note how m = 8 since we're comparing this to the form \theta_m)

x_n = x_5 = 3.33 \text{ cm} = 0.0333 \text{ meters} (n = 5 as we're dealing with the 5th minimum )

---------------

Method 1

d\sin(\theta_m) = m\lambda\\\\0.000250\sin(\theta_8) = 8\lambda\\\\8\lambda = 0.000250\sin(1.12^{\circ})\\\\\lambda = \frac{0.000250\sin(1.12^{\circ})}{8}\\\\\lambda \approx 0.000 000 61082633\\\\\lambda \approx 6.1082633 \times 10^{-7} \text{meters}\\\\ \lambda \approx 6.11 \times 10^{-7} \text{ meters}\\\\ \lambda \approx 611 \text{ nm}

Make sure your calculator is in degree mode.

-----------------

Method 2

\Delta x = \frac{\lambda*L*m}{d}\\\\L*\tan(\theta_m) = \frac{\lambda*L*m}{d}\\\\\tan(\theta_m) = \frac{\lambda*m}{d}\\\\\tan(\theta_8) = \frac{\lambda*8}{0.000250}\\\\\tan(1.12^{\circ}) = \frac{\lambda*8}{0.000250}\\\\\lambda = \frac{1}{8}*0.000250*\tan(1.12^{\circ})\\\\\lambda \approx 0.00000061094306 \text{ meters}\\\\\lambda \approx 6.1094306 \times 10^{-7} \text{ meters}\\\\\lambda \approx 611 \text{ nm}\\\\

-----------------

Method 3

\frac{d*x_n}{L} = \left(n-\frac{1}{2}\right)\lambda\\\\\frac{0.000250*3.33}{302.0} = \left(5-\frac{1}{2}\right)\lambda\\\\0.00000275662251 \approx \frac{9}{2}\lambda\\\\\frac{9}{2}\lambda \approx 0.00000275662251\\\\\lambda \approx \frac{2}{9}*0.00000275662251\\\\\lambda \approx 0.00000061258279 \text{ meters}\\\\\lambda \approx 6.1258279 \times 10^{-7} \text{ meters}\\\\\lambda \approx 6.13 \times 10^{-7} \text{ meters}\\\\\lambda \approx 613 \text{ nm}\\\\

There is a slight discrepancy (the first two results were 611 nm while this is roughly 613 nm) which could be a result of rounding error, but I'm not entirely sure.

7 0
3 years ago
According to the graph, how many students received an 90 for their first semester grade?
SCORPION-xisa [38]

Answer:

B

Explanation:

B

4 0
3 years ago
What is the frequency of radiation whose wavelength is 11.5 a0 ?
irakobra [83]

Answer:

The frequency of radiation is 2.61 \times 10^{17} s^{-1}

Explanation:

Given:

Wavelength \lambda = 11.5 \times 10^{-10} m

Speed of light c = 3 \times 10^{8} \frac{m}{s}

For finding the frequency of radiation,

  c = f \lambda

  f = \frac{c}{\lambda}

  f = \frac{3 \times 10^{8} }{11.5 \times 10^{-10} }

  f = 2.61 \times 10^{17} s^{-1}

Therefore, the frequency of radiation is 2.61 \times 10^{17} s^{-1}

4 0
3 years ago
A proton enters a uniform magnetic field of strength 1 T at 300 m/s. The magnetic field is oriented perpendicular to the proton’
scZoUnD [109]

A charged particle moving in a magnetic field experiences a force equal to:

\vec{F}=q\vec{v}\times \vec{B}

Thus, the magnitude of the force that the proton experiences is given by:

F=qvBsin\theta

The magnetic field is perpendicular to the proton's velocity, therefore, we have \theta=90^\circ. Replacing the given values, we obtain:

F=1.6*10^{-19}C(300\frac{m}{s})(1T)sin(90^\circ)\\F=4.8*10^{-17}N

3 0
3 years ago
Other questions:
  • Copper has a specific heat of 0.385 j. A piece of copper absorbs 5000 J of energy and undergoes a temperature change from 100 Ce
    14·1 answer
  • Investigators studied the effect of temperature on the rate of biological enzyme action. The experimental data is summarized in
    7·2 answers
  • PLEASE HELP An object is thrown upward with an initial velocity of 32.1 m/s. What is its velocity in 4.0 s? (use g = 9.81 m/s2).
    7·1 answer
  • How is temperature and viscosity related?
    10·1 answer
  • How does the electric force between two charged particles change if one
    10·1 answer
  • Assume that the total cholesterol levels for adults are normally distributed with mean cholesterol level of 51.6 ​mg/dL and stan
    13·1 answer
  • On a part-time job, you are asked to bring a cylindrical iron rod of density 7800 kg/m^3 , length 92.4 cm and diameter 2.15 cm f
    9·1 answer
  • A hockey stick stores 4.2 J of potential energy when it is bent 3.1 cm. Treating the hockey stick as a spring, what is its sprin
    14·1 answer
  • Dr paivio studies the ways In which the endocrine system and the nervous system are similar.
    11·1 answer
  • A syringe is filled with air of volume 10 cm at 100 kPa and then sealed. Itis compressed so that its volume is reduced by 45 %.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!