Jupiter Cannot Become A Star.
Jupiter Is The Fastest Spinning Planet In The Solar System.
The Clouds On Jupiter Are Only 50 km Thick.
Sounds like the shingle/ball is thrown from the roof horizontally, so that the distance it travels <em>x</em> after time <em>t</em> horizontally is
<em>x</em> = (7.2 m/s) <em>t</em>
The object's height <em>y</em> at time <em>t</em> is
<em>y</em> = 9.4 m - 1/2 <em>gt</em>²
where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, and its vertical velocity is
<em>v</em> = -<em>gt</em>
(a) The object hits the ground when <em>y</em> = 0:
0 = 9.4 m - 1/2 <em>gt</em>²
<em>t</em>² = 2 * (9.4 m) / (9.80 m/s²)
<em>t</em> ≈ 1.92 s
at which time the object's vertical velocity is
<em>v</em> = -<em>g</em> (1.92 s) = -18.8 m/s ≈ -19 m/s
(b) See part (a); it takes the object about 1.9 s to reach the ground.
(c) The object travels a horizontal distance of
<em>x</em> = (7.2 m/s) * (1.92 s) ≈ 13.8 m ≈ 14 m
The moment of inertia is the rotational analog of mass, and it is given by
the product of mass and the square of the distance from the axis.
- The moment of inertia changes as the position of the weight is changed, which indicates that; statement is incorrect
Reasons:
The weight on each arm that have adjustable positions can be considered as point masses.
The moment of inertia of a point mass is <em>I</em> = m·r²
Where;
m = The mass of the weight
r = The distance (position) from the center to which the weight is adjusted
Therefore;
The moment of inertia, <em>I </em>∝ r²
Which gives;
Doubling the distance from the center of rotation, increases the moment of inertia by factor of 4.
Therefore, the statement contradicts the relationship between the radius of rotation and moment of inertia.
Learn more about moment of inertia here:
brainly.com/question/4454769
Answer:
Plants slow down water as it flows over the land and this allows much of the rain to soak into the ground. Plant roots hold the soil in position and prevent it from being blown or washed away. Plants break the impact of a raindrop before it hits the soil, reducing the soil's ability to erode.
Explanation: