Answer:
Highest energy will be equal to 
Explanation:
Charged on doubly ionized helium atom 
It is accelerated with maximum voltage of 3 MV
So voltage 
Now energy is given by 
So highest energy will be equal to 
The researcher may first weight the beaker with water and then start to heat the water to a constant temperature, for example 30 °C and then start adding salt and stirring. He should add salt slowly until solid salt starts to become visible and the solution starts becoming cloudy. When this happens, he should quickly weigh the beaker. The increase in mass is the mass of salt dissolved at that temperature.
The procedure is then repeated but at an increased temperature until 5-6 temperatures have been tested.
Answer:
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
Explanation:
<u>Step 1: </u>Data given
mass of water = 300 grams
initial temperature = 10°C
final temperature = 50°C
Temperature rise = 50 °C - 10 °C = 40 °C
Specific heat capacity of water = 4.184 J/g °C
<u>Step 2:</u> Calculate the heat
Q = m*c*ΔT
Q = 300 grams * 4.184 J/g °C * (50°C - 10 °C)
Q = 50208 Joule = 50.2 kJ
There is 50.2 kJ heat need to heat 300 gram of water from 10° to 50°C
<span>In a salt solution (a solution of water (H2O) and Salt, chemical formula NaCl), the positively charged Hydrogen atoms from water form bonds with the negatively charged Chloride atoms of Salt (which is the formulate NaCl), and the negatively charged oxygen atom of water (one atom per water molecule) form a bond with the positively charged Sodium ions (Na) of salt.</span>