Judge/court has the final say
Metals have free electrons due to the bonding in metallic substances.
In a metal there are strong attractive forces between the nuclei and the valance electrons.
Positively charged metal nuclei form a lattice (a cube like structure) each metal atom provides one or more valance electrons <u>that are free to move throughout the lattice</u> The electrons are attracted to the positively charged nuclei but not one individual nuclei, this is called non-directional bonding since it occurs in all directions.
Now all metals are conductive becuase of the free to move (delocalised) electrons. Since the valance electrons are free to move throughout the lattice they are able to carry a charge. (Ionic solids cannot since the ionic solids form a tightly packed lattice with cations and anions which have no free moving electrons, electrons have to be able to move to carry a charge)
<u />
Answer:
a) 0.64 b) 2.17m/s^2 c) 8.668joules
Explanation:
The block was on the ramp, the ramp was inclined at 20degree. A force of 5N was acting horizontal to the but not parallel to the ramp,
Frictional force = horizontal component of the weight of the block along the ramp + the applied force since the block was just about move
Frictional force = mgsin20o + 5N = 6.71+5N = 11.71
The force of normal = the vertical component of the weight of the block =mgcos20o = 18.44
Coefficient of static friction = 11.71/18.44= 0.64
Remember that g = acceleration due to gravity (9.81m/s^2) and m = mass (2kg)
b) coefficient of kinetic friction = frictional force/ normal force
Fr = 0.4* mgcos 20o = 7.375N
F due to motion = ma = total force - frictional force
Ma = 11.71 - 7.375 = 4.335
a= 4.335/2(mass of the block) = 2.17m/s^2
C) work done = net force *distance = 4.335*2= 8.67Joules
The net force acting on the car is
3 × 10^3
Newtons.
Force is defined as the product of the mass of the body and its aaceleration,
⇒ F = ma
Substituting the above given values we get,
F =(1500kg) (2.0 m/s^2) = 3000N = 3 × 10^3N .