There are two<span> main types of </span>wave<span> interference: constructive interference and destructive interference. Constructive interference </span>happens<span> when the amplitude of the combined </span>waves<span> is larger than the amplitudes of the single </span>waves<span>. This can occur when the </span>crests of two<span> transverse </span><span>waves overlap.
Hope this helps!!! :D
</span>
Answer:
The answer is 50 Nm
Explanation:
<h3><u>Given</u>;</h3>
- Applied Force = 50 Newton
- Total Displacement = 1 meter
<h3>
<u>To </u><u>Find</u>;</h3>
Here,
W = F • d
W = 50 • 1
W = 50 Nm
Thus, Work done is 50 Nm
<u>-TheUnknownScientist 72</u>
Answer:
0.79
Explanation:
Using Snell's law, we have that:
n(1) * sin θ1 = n(2) * sinθ2
Where n(1) = refractive index of air = 1.0003
θ1 = angle of incidence
n(2) = refractive index of second substance
θ2 = angle of refraction
The angle of reflection through the unknown substance is the same as the angle of incidence of air. This means that θ1 = 32°
=> 1.0003 * sin32 = n(2) * sin42
n(2) = (1.0003 * sin32) / sin42
n(2) = 0.79
The frequency f is related to the wavelength

by the equation

where v is the speed of the wave in the rope.
We can see from the formula that, if v is kept constant, smaller frequency means larger wavelength. So, the rope with frequency 2 Hz will have the longest wavelength.
These are the reactants because they are on the left side of the equation.