Cups
teaspoon
tablespoon
liters
milliliters
gallons
pints
tons
inches
Answer:
Heat Transfer
Explanation:
This is called heat transfer. Heat transfer is the process in which energy flows from a matter that is higher in heat to a matter that is cooler, until the two matters reach the same temperature.
Answer:
0.0133 A
Explanation:
The time at which B=1.33 T is given by
1.33 = 0.38*t^3
t = (1.33/0.38)^(1/3) = 1.52 s
Using Faraday's Law, we have
emf = - dΦ/dt = - A dB/dt = - A d/dt ( 0.380 t^3 )
Area A = pi * r² = 3.141 *(0.025 *0.025) = 0.00196 m²
emf = - A*(3*0.38)*t^2
thus, the emf at t=1.52 s is
emf = - 0.00196*(3*0.38)*(1.52)^2 = -0.0052 V
if the resistance is 0.390 ohms, then the current is given by
I = V/R = 0.0052/0.390 = 0.0133 A
Answer:
Vf = 15 m/s
Explanation:
First we consider the upward motion of ball to find the height reached by the ball. Using 3rd equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity = -9.8 m/s² (negative sign for upward motion)
h = height =?
Vf = Final Velocity = 0 m/s (Since, ball momentarily stops at highest point)
Vi = Initial Velocity = 15 m/s
Therefore,
2(-9.8 m/s²)h = (0 m/s)² - (15 m/s)²
h = (-225 m²/s²)/(-19.6 m/s²)
h = 11.47 m
Now, we consider downward motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity = 9.8 m/s²
h = height = 11.47 m
Vf = Final Velocity = ?
Vi = Initial Velocity = 0 m/s
Therefore,
2(9.8 m/s²)(11.47 m) = Vf² - (0 m/s)²
Vf = √(224.812 m²/s²)
<u>Vf = 15 m/s</u>