Answer:
#_time = 7.5 10⁴ s
Explanation:
In order for the astronaut to be younger than the people on earth, it follows that the speed of light has a constant speed in vacuum (c = 3 108 m / s), therefore with the expressions of special relativity we have.
t =
where t_p is the person's own time in an immobile reference frame,

let's calculate
we assume that the speed of the space station is constant
t_ = 0.99998666657 s
therefore the time change is
Δt = t - t_p
Δt = 1 - 0.9998666657
Δt = 1.3333 10⁻⁵ s
this is the delay in each second, therefore we can use a direct rule of proportions. If Δt was delayed every second, how much second (#_time) is needed for a total delay of Δt = 1 s
#_time = 1 / Δt
#_time =
#_time = 7.5 10⁴ s
Answer:
Their measured results are closer to the exact or true value. Hence, their measured value is considered to be more accurate.
Explanation:
Considering the situation described above, the accuracy of a measured value depicts how closely a measured value is to the accurate value.
Hence, since the students' measured values have very low percent differences, it shows the similarity of computations or estimates to the actual values, which in turn offers a smaller measurement error.
Therefore, their measured results are closer to the exact or true value, which implies that their measured value is considered to be more accurate.
Answer:
Option B (remain vertically under the plane) is the correct option.
Explanation:
- A flare would follow a particle trajectory with horizontal direction somewhat like airplane velocity as well as initial maximum motion as null but instead, gravity will induce acceleration. It would be lowered vertically underneath the plane before flare had already sunk to something like the surface.
- There is no different movement in the airplane nor even the flash. And none of them can change its horizontal level.
Some other alternatives are given really aren't linked to the specified scenario. So choice B is the perfect solution to that.
The original amount of the radioactive isotope will be 8 grams.
<h3 /><h3>What is the half-life of radioisotopes?</h3>
The amount of time required for half of a radioisotope's nuclide to decay, or change into a different species, is known as its half-life. The conversions release either beta or alpha particles, and the response can be monitored by counting the particles released.
Given that an unknown amount of a radioactive isotope with a half-life of 2.0 h was observed for 6.0 h. if the amount of the isotope remaining after 6.0 h was 24 g.
The original amount will be calculated as below:-
( 2 / 6 ) = ( Original amount / 24 )
Original amount = 4 x 2
Original amount = 8 grams
Therefore, the original amount of the radioactive isotope will be 8 grams.
To know more about the half-life of radioisotopes follow
brainly.com/question/1783783
#SPJ4
Acceleration is the change in velocity