Answer:
the index of refraction of the second medium is lower
Explanation:
take an exaple of a light ray from air to water that is optically denser the ray is refracted to the normal thus lowering its index of refraction
The force that control the isostatic adjustment of the earth's crust is THE FORCE OF GRAVITY.
The isostatic adjustment of the earth crust refers to continuous movement of the earth crust or its deformation as a result of the force of gravity which act on it. The earth crusts that are located at the upper and a the core of the earth usually set up a balance between them which is called isostatic equilibrium.
Explanation:
(a)
The initial vertical velocity is 13 m/s. At the maximum height, the vertical velocity is 0 m/s.
v = at + v₀
0 = (-9.8) t + 13
t ≈ 1.33 s
(b)
Immediately prior to the explosion, the ball is at the maximum height. Here, the vertical velocity is 0 m/s, and the horizontal velocity is constant at 25 m/s.
v = √(vx² + vy²)
v = √(25² + 0²)
v = 25 m/s
(c)
Momentum is conserved before and after the explosion.
In the x direction:
m vx = ma vax + mb vbx
m (25) = (⅓ m) (0) + (⅔ m) (vbx)
25m = (⅔ m) (vbx)
25 = ⅔ vbx
vbx = 37.5 m/s
And in the y direction:
m vy = ma vay + mb vby
m (0) = (⅓ m) (0) + (⅔ m) (vby)
0 = (⅔ m) (vby)
vby = 0 m/s
Since the vertical velocity hasn't changed, and since Fragment B lands at the same height it was launched from, it will have a vertical velocity equal in magnitude and opposite in direction as its initial velocity.
vy = -13 m/s
And the horizontal velocity will stay constant.
vx = 37.5 m/s
The velocity vector is (37.5 i - 13 j) m/s. The magnitude is:
v = √(vx² + vy²)
v = √(37.5² + (-13)²)
v ≈ 39.7 m/s
<h3><u>Answer;</u></h3>
18 Joules
<h3><u>Explanation;</u></h3>
- <em><u>Work is the measures the transfer of energy when an object moves over a given distance.</u></em>
- Work is therefore given by; Force × distance
Force =36 Newtons
Distance = 0.5 meters
- Hence; <em>work = 36 N × 0.5 N</em>
<em> = 18 Joules </em>
Answer:
Hammer
Anvil
Stirrup
Explanation:
The three tiny bones in the ear drum are:
Hammer, this is also known as malleus and it is attached to the eardrum
Anvil, this is also called incus and it found with the chain of bones in the middle ear.
Stirrup, also known as stapes and it attached to the membrane covered opening that connects the middle ear with the inner ear.