Answer:
a) 4.49Hz
b) 0.536kg
c) 2.57s
Explanation:
This problem can be solved by using the equation for he position and velocity of an object in a mass-string system:

for some time t you have:
x=0.134m
v=-12.1m/s
a=-107m/s^2
If you divide the first equation and the third equation, you can calculate w:

with this value you can compute the frequency:
a)

b)
the mass of the block is given by the formula:

c) to find the amplitude of the motion you need to know the time t. This can computed by dividing the equation for v with the equation for x and taking the arctan:

Finally, the amplitude is:

Answer:
The current is not used up. The electrons flow through the entire circuit and this travel is the current. They flow until they are not charged anymore. That is also why the circuit must be closed or else electrons would escape not just light it up for a second then go out.
Explanation:
Answer:
h f = Wf + K
where the total energy available is h f, Wf is the work function or the work needed to remove the electron and K is the kinetic energy of the removed electron
If K = zero then hf = Wf
Wf = h f = h c / λ or
λ = h c / Wf = 6.63E-34 * 3.0E8 / (3.7 * 1.6E-19)
λ = 6.63 * 3 / (3.7 * 1.6) E-7 = 3.36E-7
This would be 3360 angstroms or 336 millimicrons
Visible light = 400-700 millimicrons
Answer:
Explanation:
The question is incomplete.
The equation of motion is given for a particle, where s is in meters and t is in seconds. Find the acceleration after 4.5 seconds.
s= sin2(pi)t
Acceleration = d²S/dt²
dS/dt = 2πcos2πt
d²S/dt² = -4π²sin2πt
A(t) = -4π²sin2πt
Next is to find acceleration after 4.5 seconds
A(4.5) = -4π²sin2π(4.5)
A(4.5) = -4π²sin9π
A(4.5) = -4π²sin1620
A(4.5) = -4π²(0)
A(4.5) = 0m/s²
The correct answer is matter. Matter is a physical substance, so it is that only option provided that can be broken down to the subatomic particle level.