Answer:
The electric field is
and the ditection is from outer to inner side of the membrane.
Explanation:
We know the electric field (
) is given by
, 'V' being the potential.
In 1-D, it can be written as

where 'd' is the separation of space in between the potential difference is created.
Given,
and the thickness of the cell membrane is
.
Therefore the created electric field through the cell membrane is

Answer:
<h2>3.3 J</h2>
Explanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 10 m/s²
From the question we have
PE = 1.5 × 10 × 0.22
We have the final answer as
<h3>3.3 J</h3>
Hope this helps you
Answer:
h=12.41m
Explanation:
N=392
r=0.6m
w=24 rad/s

So the weight of the wheel is the force N divide on the gravity and also can find momentum of inertia to determine the kinetic energy at motion


moment of inertia

Kinetic energy of the rotation motion

Kinetic energy translational

Total kinetic energy

Now the work done by the friction is acting at the motion so the kinetic energy and the work of motion give the potential work so there we can find height

The lines can be traced out with a compass. The needle is like a permanent magnet and the north indicator is the north end of a magnet.
There are huge losses in the transmission, production and usage of electricity and the reduction of these losses in order to save electricity is called as conservation of energy.
As per the statistics, there is loss of nearly 4% while the transmission of electricity. Like wise during production also, lot of electricity get wasted due to the inefficient material used. None of the production material nor the equipment used have 100% efficiency and thus there is always a possibility of energy wastage.
When it is said that the energy is wasted , it simply means that the energy production which should have been 100% as per calculation is not completely derived from the source due to the inefficient conversion process. For example, a turbine while rotating must convert 100 % of the water energy or water falling on it into electrical energy but the turbine is not able to do so as some of the water is lost or its energy is lost before conversion while going through the mechanical process.