Answer:
1.11 m/s
Explanation:
The motion of the boat is an example of accelerated motion, since the velocity is not constant. However, we don't need to find the acceleration, because we are only interested in the average velocity of the boat, which is given by:

where d is the total distance covered and t the time taken. In this problem, the boat covered a distance of d = 20 m and it takes t = 18 s, therefore the average velocity is

Answer and Explanation:
The ball is bouncing to a height of 1/3 of its previous height this is a type of geometric sequence the total distance can be found by the sum of geometric sequence
For example let the initial height is 243 fit
After one bounce it will reach 243/3 =81 feet
After second bounce 81/3=27 feet
After third bounce 27/3 =9 feet
After fourth bounce 9/3 =3 feet
So a sequence is formed that is 243,81,27,9,3..........
Here 
Sum of infinite GP = 
From this formula we can find the total distance traveled by the ball
Answer: 0.333 h
Explanation:
This problem can be solved using the <u>Radioactive Half Life Formula</u>:
(1)
Where:
is the final amount of the material
is the initial amount of the material
is the time elapsed
is the half life of the material (the quantity we are asked to find)
Knowing this, let's substitute the values and find
from (1):
(2)
(3)
Applying natural logarithm in both sides:
(4)
(5)
Clearing
:
(6)
Finally:
This is the half-life of the Bismuth-218 isotope
I believe its the law of inertia
Answer:
Below
Explanation:
You can use this equation to find the distance :
distance = velocity x time
distance = (26.7)(3.06)
= 81.702 m
Rounding to 3 sig figs
= 81.7 m
Hope this helps