As the greater force of tension (by 81N) is exerted by the team on the right the rope will move to the right.
I believe the correct answer from the choices listed above is option 4. Base from the passage given above, it is very clear that the Campylobacter is a bacteria used to test in <span>identifying drug-resistant bacteria. Hope this answers the question. Have a nice day.</span>
Answer:
I = 0.09[amp] or 90 [milliamps]
Explanation:
To solve this problem we must use ohm's law, which tells us that the voltage is equal to the product of the voltage by the current.
V = I*R
where:
V = voltage [V]
I = current [amp]
R = resistance [ohm]
Now, we replace the values of the first current into the equation
V = 180*10^-3 * R
V = 0.18*R (1)
Then we have that the resistance is doubled so we have this new equation:
V = I*(2R) (2)
The voltage remains constant therefore 1 and 2 are equals and we can obtain the current value.
V = V
0.18*R = I*2*R
I = 0.09[amp] or 90 [milliamps]
Answer:
The workdone is
Explanation:
From the question we are told that
The potential difference is 
Generally the charge on
is 
Generally the workdone is mathematically represented as

=>
=>