Answer:
a) 11 m/s
b) 0.0564 s
Explanation:
Given:
m = 2100 kg
vi = 22 ..... m/s before collision
vf = 0 ......after collision to stop
Δs = 0.62 distance traveled after collision .. crumpling of truck
Part a

Part b

You must observe the object twice.
-- Look at it the first time, and make a mark where it is.
-- After some time has passed, look at the object again, and
make another mark at the place where it is.
-- At your convenience, take out your ruler, and measure the
distance between the two marks.
What you'll have is the object's "displacement" during that period
of time ... the distance between the start-point and end-point.
Technically, you won't know the actual distance it has traveled
during that time, because you don't know the route it took.
Answer:
It is direct proportionality. The greater the mass, the greater is the gravitational potential energy. The equation for GPE is : GPE = mgh, where m is the mass, g is the acceleration due to gravity, and h is the height above the ground. As you can see GPE is directly proportional to mass, and height. KT.
Explanation:
Gravitational potential energy is a function of both the mass of your system and the mass of the thing generating the gravity field around your system.
The relationship is linear, which means that if you multiply or divide one of the masses by some number but leave everything else the same, you multiply or divide the potential energy by the same number. A 3kg mass has three times the gravitation potential energy of a 1kg mass, if placed in the same location.
C) In the absence of an unbalanced force, an object at rest will stay at rest and an object in motion will stay in motion.
hope this helps and have a great day :)
Answer:
letter C. velocity hope this helps