Answer:
2.09 m/s
Explanation:
As the spring is stretched initially , and the mass released from rest i.e v=0. Also, The next time the speed becomes zero again is when the spring is fully compressed, and the mass is on the opposite side of the spring with respect to its equilibrium position, after a time t=0.600 s. This illustrates half oscillation of the system.
Therefore, for the period of a full oscillation of the system
T= 2t => 2(0.6)=> 1.2 s
As the frequency is the reciprocal of the period, we have
f= 1/T => 1/1.2
f= 0.833 Hz
The angular frequency'ω' is given by,
ω= 2πf => 2π x 0.833=>5.23 rad/s
For the maximum velocity of the object in a spring-mass system:
V
= Aω
where A is the amplitude of the oscillation. As here, the amplitude of the motion corresponds to the initial displacement of the object (A=0.400 m)
V
= 0.4 x 5.23 =>2.09 m/s
Earths plates move, creating them to rub together to create earthquakes, and volcanoes occur because magma melts rocks and the pressure is so intense it causes the lava to leak out of the top of a mountain
The substance that is made of atoms of more than one type bound together is called an atomic bond or a multi bond
The length of a 2 sec pendulum is 1 m.
Given that, initial length of the simple pendulum L₁ = 1 m
Initial time period T₁ = 2 sec
We need to find the length of the pendulum whose time period is 2 sec
T₂ = 2 sec
L₂ = ?
We know that the time period of the simple pendulum is given by the formula,
T = 2π√(L/g)
From the above relation, we can write T ∝ √L
T₁ / T₂ = √(L₁/L₂)
Making L₂ from the above relation, we have,
L₂ = (T₂² * L₁)/ T₁² = 2² * 1/ 2² = 1 m
Thus, the length of a 2 sec pendulum is 1 m.
To know more about time period:
brainly.com/question/17350379
#SPJ4