Answer:
The rate of the reaction will increase by a factor of 9.
Explanation:
Hello,
In this case, considering the given second-order reaction, whose rate law results:
![r=k[A] [B]^2](https://tex.z-dn.net/?f=r%3Dk%5BA%5D%20%5BB%5D%5E2)
We easily infer that at constant concentration of A but tripling the concentration of B, we are going to obtain the following increasing factor while holding the remaining variables constant:
![Increase\ factor=\frac{r_{final}}{r_{initial}} =\frac{k[A][3*B]^2}{k[A][B]^2} =\frac{3^2}{1} \\Increase\ factor=9](https://tex.z-dn.net/?f=Increase%5C%20factor%3D%5Cfrac%7Br_%7Bfinal%7D%7D%7Br_%7Binitial%7D%7D%20%3D%5Cfrac%7Bk%5BA%5D%5B3%2AB%5D%5E2%7D%7Bk%5BA%5D%5BB%5D%5E2%7D%20%3D%5Cfrac%7B3%5E2%7D%7B1%7D%20%5C%5CIncrease%5C%20factor%3D9)
Best regards.
The answer is A. Isotopes only differ in the number of neutrons in the nucleus of their atoms. Otherwise, all other subatomic particles are the same. The isotope with the more neutrons in its nucleus is therefore, heavier (have higher mass number). They share the same chemical properties but have slight physical differences such as boiling points with the heavier element having a slightly higher boiling point that the lighter element.
An exothermic reaction releases heat. An endothermic reaction absorbs heat. Burning gas releases heat so it would be exothermic. Acid and water react heating the beaker would be exothermic because it releases heat from the reaction. Hope this helps! ;)
Answer: V = 33.9 L
Explanation: We will use Charles Law to solve for the new volume.
Charles Law is expressed in the following formula. Temperatures must be converted in Kelvin.
V1 / T1 = V2 / T2 then derive for V2
V2 = V1 T2 / T1
= 35 L ( 308 K ) / 318 K
= 33.9 L