For an aqueous solution of MgBr2, a freezing point depression occurs due to the rules of colligative properties. Since MgBr2 is an ionic compound, it acts a strong electrolyte; thus, dissociating completely in an aqueous solution. For the equation:
ΔTf<span> = (K</span>f)(<span>m)(i)
</span>where:
ΔTf = change in freezing point = (Ti - Tf)
Ti = freezing point of pure water = 0 celsius
Tf = freezing point of water with solute = ?
Kf = freezing point depression constant = 1.86 celsius-kg/mole (for water)
m = molality of solution (mol solute/kg solvent) = ?
i = ions in solution = 3
Computing for molality:
Molar mass of MgBr2 = 184.113 g/mol
m = 10.5g MgBr2 / 184.113/ 0.2 kg water = 0.285 mol/kg
For the problem,
ΔTf = (Kf)(m)(i) = 1.86(0.285)(3) = 1.59 = Ti - Tf = 0 - Tf
Tf = -1.59 celsius
If each gas sample has the same temperature and pressure, which has the greatest volume? Since hydrogen gas has the lowest molar mass of the set, 1 g will have the greatest number of moles and therefore the greatest volume. What is the Ideal Gas Law?
D) Chlorine, Cl. Hope that helped
Metals present in municipal waste water may still be present in treated sewage sludge IN CONCENTRATIONS THAT MAY AFFECT THE PUBLIC HEALTH. Sewage sludge is an end product of municipal waste water treatment and it contains many of the pollutant that are removed from the waste water.
The term which is described as a long, narrow depression in the ocean floor would be ocean trench. They <span>are hemispheric-scale long but narrow topographic depressions of the sea floor. They are also the deepest parts of the ocean floor. Hope this answers the question.</span>