Answer:
c) up, less than the weight of the anchor
Explanation:
An object floats when the weight of the water the object displaces is equal to the weight of the object. In this case the weight of the anchor and the weight of the water it displaces is not the same so it sinks. Buoyancy is the force that acts on body when it is in water.
When buoyancy is less than the force that the object is generating due to gravity the object sinks. Buoyancy always acts up.
Answer:
v = 15 m / s
Explanation:
In this exercise we are given the position function
x = 5 t²
and we are asked for the average velocity in an interval between t = 0 and t= 3 s, which is defined by the displacement between the time interval
let's look for the displacements
t = 0 x₀ = 0 m
t = 3
= 5 3 2
x_{f} = 45 m
we substitute

v = 15 m / s
Answer:
The magnitude of the induced Emf is 
Explanation:
The width of the truck is given as 79inch but we need to convert to meter for consistency, then
The width= 79inch × 0.0254=2.0066 metres.
Now we can calculate the induced Emf using expresion below;
Then the 
Where B= magnetic field component
L= width
V= velocity
=(40*10^-6) × (42) × (2.0066)
=0.003371V
Therefore, the magnitude emf that is induced between the driver and passenger sides of the truck is 0.003371V
Answer:
(a). The resultant of these forces is 1216.55 N.
(b). The direction of the resultant forces is 80.53°.
Explanation:
Given that,
First force = 1200 N
Second force = 200 N
(a). We need to calculate the resultant of these forces
Using cosine law

Put the value into the formula



The resultant of these forces is 1216.55 N.
(b). We need to calculate the direction of the resultant forces
Using formula of direction

Put the value into the formula


Hence, (a). The resultant of these forces is 1216.55 N.
(b). The direction of the resultant forces is 80.53°.