Pulse type of modulation is applied to radio-controlled toys, therefore the correct answer is option D.
<h3>What is the frequency?</h3>
It can be defined as the number of cycles completed per second. It is represented in hertz and inversely proportional to the wavelength.
Toys controlled by remote control operate by emitting infrared radiation. These infrared rays have a frequency of 34–48 kilo Hertz.
Different types of modulations, such as frequency and amplitude modulation for transmitting and receiving video and music, are employed for other reasons.
Thus, the Pulse-type of modulation is applied to radio-controlled toys, therefore the correct answer is option D.
Learn more about frequency from here
brainly.com/question/14316711
#SPJ1
If the machine's mechanical advantage is 4.5, that means that
Output force = (4.5) x (Input force) .
We know the input force, and we need to find the output force. Rather than wander around the room looking at the floor while our hair smolders, let's try putting the numbers we know into the equation I wrote up there. OK ?
Output force = (4.5) x (Input force)
Output force = (4.5) x (800 N)
Now dooda multiplication:
<em>Output force = 3,600 N</em> .
That's exactly what the question asked for. So we're done !
Answer:
14,300 lines per cm
Explanation:
Answer:
14,300 cm per line
Explanation:
λ400 nm to 400nm
We can find the maximum number of lines per centimeter, which is reciprocal of the least distance separating two adjacent slits, using the following equation.
mλ = dsin (θ)
In this equation,
m is the order of diffraction.
λ is the wavelength of the incident light.
d is the distance separating the centers of the two slits.
θ is the angle at which the mth order would diffract.
To find the least separation that allows the observation of one complete order of spectrum of the visible region, we use the maximum wavelength of the visible region is 700 nm.
d = mλ / sin (θ)
As we want the distance d to be the smallest then sin (θ) must be the greatest, and the greatest value of the sin (θ) is 1. For that we also use the longest wavelength because using the smallest wavelength, the longest wavelength would not be diffracted.
d = mλ / sin (θ)
d = 1 x 700nm / 1
= 700 nm
So, the least separation that would allow for the possibility of observing complete first order of the visible region spectra is 700 nm, and knowing the least separation we can find the maximum number of lines per cm, which is the reciprocal of the number of lines per cm.
n = 1/d
= 1 / 700 x 
= 1, 430,000 lines per m
= 14,300 lines per cm
<u>The maximum number of lines per cm, that would allow for the observation of the complete first order visible spectra.</u>