1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
algol [13]
3 years ago
10

A projectile is fired into the air from the top of a 200-m cliff above a valley as shown below. Its initial velocity is 60 m/s a

t 60° above the horizontal. Calculate (a) the maximum height, (b) the time required to reach its highest point, (c) the total time of flight, (d) the components of its velocity just before striking the ground, and (e) the horizontal distance traveled from the base of the cliff.​
Physics
1 answer:
anastassius [24]3 years ago
5 0

a) y(max)  = 337.76 m

b) t₁ = 5.30 s  the time for y maximum

c)t₂ =  13.60 s  time for y = 0 time when the fly finish

d) vₓ = 30 m/s        vy = - 81.32 m/s

e)x = 408 m

Equations for projectile motion:

v₀ₓ = v₀ * cosα          v₀ₓ = 60*(1/2)     v₀ₓ = 30 m/s   ( constant )

v₀y = v₀ * sinα           v₀y = 60*(√3/2)     v₀y = 30*√3  m/s

a) Maximum height:

The following equation describes the motion in y coordinates

y  =  y₀ + v₀y*t - (1/2)*g*t²      (1)

To find h(max), we need to calculate t₁ ( time for h maximum)

we take derivative on both sides of the equation

dy/dt  = v₀y  - g*t

dy/dt  = 0           v₀y  - g*t₁  = 0    t₁ = v₀y/g

v₀y = 60*sin60°  = 60*√3/2  = 30*√3

g = 9.8 m/s²

t₁ = 5.30 s  the time for y maximum

And y maximum is obtained from the substitution of t₁  in equation (1)

y (max) = 200 + 30*√3 * (5.30)  - (1/2)*9.8*(5.3)²

y (max) = 200 + 275.40 - 137.64

y(max)  = 337.76 m

Total time of flying (t₂)  is when coordinate y = 0

y = 0 = y₀  + v₀y*t₂ - (1/2)* g*t₂²

0 = 200 + 30*√3*t₂  - 4.9*t₂²            4.9 t₂² - 51.96*t₂ - 200 = 0

The above equation is a second-degree equation, solving for  t₂

t =  [51.96 ±√ (51.96)² + 4*4.9*200]/9.8

t =  [51.96 ±√2700 + 3920]/9.8

t =  [51.96 ± 81.36]/9.8

t = 51.96 - 81.36)/9.8         we dismiss this solution ( negative time)

t₂ =  13.60 s  time for y = 0 time when the fly finish

The components of the velocity just before striking the ground are:

vₓ = v₀ *cos60°       vₓ = 30 m/s  as we said before v₀ₓ is constant

vy = v₀y - g *t        vy = 30*√3  - 9.8 * (13.60)

vy = 51.96 - 133.28         vy = - 81.32 m/s

The sign minus means that vy  change direction

Finally the horizontal distance is:

x = vₓ * t

x = 30 * 13.60  m

x = 408 m

You might be interested in
Clouds in our atmosphere cause us to see the different phases of the moon.
krok68 [10]

Answer:

False

Explanation:

:)

8 0
3 years ago
Read 2 more answers
The charge per unit length on a long, straight filament is -92.0 μC/m. Find the electric field 10.0 cm above the filament.
Pepsi [2]

Answer:

E = 1.655 x 10⁷ N/C towards the filament

Explanation:

Electric field due to a line charge is given by the expression

E = [tex]\frac{\lambda}{2\pi\times\epsilon_0\times r}[/tex]

where λ is linear charge density of line charge , r is distance of given point from line charge and ε₀ is a constant called permittivity and whose value is

8.85 x 10⁻¹².

Putting the given values in the equation given above

E = \frac{92\times10^{-6}}{2\times3.14\times8.85\times10^{-12}\times10^{-1}}

E = 1.655 x 10⁷ N/C

4 0
3 years ago
The valence electrons of metals are weakly attracted to the parent nuclei, so the electrons break free and float. The moving ele
siniylev [52]

The valence electrons of metals are weakly attracted to the parent nuclei, so the electrons break free and float. The moving electrons form a electron <u>negative</u> blanket that binds the atomic <u>positive</u> nuclei together, forming a metallic bond.

So the answers are <u>{ Negative }</u> and <u>{ Positive }.</u>  

Please vote Brainliest (:

5 0
3 years ago
Read 2 more answers
What is the largest possible magnitude of the acceleration of the electron due to the magnetic field?
Alina [70]
Thank you for posting your question here at brainly. But your question seems incomplete. I will assume you based the situation below:

<span>An electrons moves at 2.0x10^6 m/s through a region in which there is a magnetic field of unspecified direction and magnitude 7.4x10^-2 T. 

The </span> largest possible magnitude of the acceleration of the electron due to the magnetic field is <span>= 2.6 × 10 ¹⁶ m / s ²</span>
6 0
3 years ago
If a car travels 216 kilometers in 4 hours, calculate its speed.
Mariana [72]

Answer:

15 m/s

Explanation:

Speed(m/s) = distance(m)/time(s)

distance = 216 km = 216,000 m

time = 4 hours = 14,400 s

speed = 216000/14400 = 15 m/s

6 0
2 years ago
Read 2 more answers
Other questions:
  • Why can light microscopes produce images in their natural color
    6·1 answer
  • What is the bottom of the refrigerator called?
    10·1 answer
  • Which form or radiation has the greater frequency?<br> UV radiation or violet light?
    10·2 answers
  • И СРСct to
    6·1 answer
  • A plane has a mass of 2,000 kg and is traveling 100 meters above the ground. What is the plane’s potential energy?
    5·1 answer
  • Tafu is working with subatomic particles in the physics lab. a positron is traveling in a straight line down the particle accele
    9·1 answer
  • Does energy generation through a water generator seem to depend more on potential or kinetic energy? Explain.
    8·2 answers
  • Un niño de 25 kg corre por un jardín con una velocidad de 2.5 m/s de forma que su trayectoria es tangente al borde de un carruse
    11·1 answer
  • A player kicks a football from ground level with an initial velocity of 27.0 m/s, 30.0° above the
    5·1 answer
  • A flywheel of diameter 1.2 m has a constant angular acceleration of 5.0 rad/s2. The tangential acceleration of a point on its ri
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!