1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
algol [13]
2 years ago
10

A projectile is fired into the air from the top of a 200-m cliff above a valley as shown below. Its initial velocity is 60 m/s a

t 60° above the horizontal. Calculate (a) the maximum height, (b) the time required to reach its highest point, (c) the total time of flight, (d) the components of its velocity just before striking the ground, and (e) the horizontal distance traveled from the base of the cliff.​
Physics
1 answer:
anastassius [24]2 years ago
5 0

a) y(max)  = 337.76 m

b) t₁ = 5.30 s  the time for y maximum

c)t₂ =  13.60 s  time for y = 0 time when the fly finish

d) vₓ = 30 m/s        vy = - 81.32 m/s

e)x = 408 m

Equations for projectile motion:

v₀ₓ = v₀ * cosα          v₀ₓ = 60*(1/2)     v₀ₓ = 30 m/s   ( constant )

v₀y = v₀ * sinα           v₀y = 60*(√3/2)     v₀y = 30*√3  m/s

a) Maximum height:

The following equation describes the motion in y coordinates

y  =  y₀ + v₀y*t - (1/2)*g*t²      (1)

To find h(max), we need to calculate t₁ ( time for h maximum)

we take derivative on both sides of the equation

dy/dt  = v₀y  - g*t

dy/dt  = 0           v₀y  - g*t₁  = 0    t₁ = v₀y/g

v₀y = 60*sin60°  = 60*√3/2  = 30*√3

g = 9.8 m/s²

t₁ = 5.30 s  the time for y maximum

And y maximum is obtained from the substitution of t₁  in equation (1)

y (max) = 200 + 30*√3 * (5.30)  - (1/2)*9.8*(5.3)²

y (max) = 200 + 275.40 - 137.64

y(max)  = 337.76 m

Total time of flying (t₂)  is when coordinate y = 0

y = 0 = y₀  + v₀y*t₂ - (1/2)* g*t₂²

0 = 200 + 30*√3*t₂  - 4.9*t₂²            4.9 t₂² - 51.96*t₂ - 200 = 0

The above equation is a second-degree equation, solving for  t₂

t =  [51.96 ±√ (51.96)² + 4*4.9*200]/9.8

t =  [51.96 ±√2700 + 3920]/9.8

t =  [51.96 ± 81.36]/9.8

t = 51.96 - 81.36)/9.8         we dismiss this solution ( negative time)

t₂ =  13.60 s  time for y = 0 time when the fly finish

The components of the velocity just before striking the ground are:

vₓ = v₀ *cos60°       vₓ = 30 m/s  as we said before v₀ₓ is constant

vy = v₀y - g *t        vy = 30*√3  - 9.8 * (13.60)

vy = 51.96 - 133.28         vy = - 81.32 m/s

The sign minus means that vy  change direction

Finally the horizontal distance is:

x = vₓ * t

x = 30 * 13.60  m

x = 408 m

You might be interested in
I have to draw a wave on a separate sheet of paper given the following measurements down below. I'm a bit confused, do I just us
Alex73 [517]
You have to draw a mathematical spatial axes .in order to judge is it right or not .. well you have to draw the crest and trough both of 1 cm in length and the total wavelength (same phase on the wave of 2 cm ) something like this

7 0
3 years ago
True or False: Chemical energy stored in food cannot be transformed into mechanical energy
Novosadov [1.4K]
The answer to this question is false. 
7 0
2 years ago
Read 2 more answers
How many atoms of carbon would two molecules of glucose (C6H12O6) have?
Sauron [17]
Well according to the molecular formula of glucose, one molecule would have 6 carbon atoms, and thus 2 molecules of glucose would have 12 carbon atoms.

The correct response would be B. 12.
4 0
2 years ago
Read 2 more answers
What would you do to increase resistance
ratelena [41]

Answer:

If this is electrical currents , make the wire longer, smaller diameter wires, heat it up

6 0
2 years ago
Read 2 more answers
During a demonstration of the gravitational force on falling objects to her class, Sarah drops an 11 lb. bowling ball from the t
tia_tia [17]

1.A) 4.9 m  

AL2006 Ace

The instant it was dropped, the ball had zero speed.


After falling for 1 second, its speed was 9.8 m/s straight down (gravity).


Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.


Falling for 1 second at an average speed of 4.9 m/s, is covered 4.9 meters.


ANYTHING you drop does that, if air resistance doesn't hold it back.


Read more on Brainly.com - brainly.com/question/11776597#readmore

2 idk sorry

5 0
2 years ago
Read 2 more answers
Other questions:
  • What characteristics of a planet determine the strength of its gravitational force on other objects? A. diameter of the planet a
    12·1 answer
  • When a 0.1-kilogram pendulum bob reaches the top of its swing, how much kinetic energy does it have?
    11·1 answer
  • you push your little sister on a swing and in 1.6 minutes you make 52 pushes what is the frequency of your swing? answer in unit
    9·1 answer
  • A 30 kg child rides a 20 kg bicycle. Together, the child and the bicycle have a momentum of 110 kg-m/s. What is the velocity of
    7·1 answer
  • A 0.50-$kg$ block slides along a small track with elevated ends and a flat central part. The flat part has a length L = 1.00 $m$
    7·1 answer
  • 20 points, just need a basic understanding. You are on a mystery planet, what you know is that from a height of 10.0 meters, a d
    11·1 answer
  • Which are the most common alkaline earth metals?
    15·1 answer
  • If a wheel rotates 5 times in 90 seconds, what is the period and frequency
    7·1 answer
  • An acorn falls from a tree. Its velocity just before it hits the ground is 28.2 m/s, downward. (acceleration of gravity is 9.81m
    6·1 answer
  • Given that the wavelengths of visible light range from 400 nm to 700 nm, what is the highest frequency of visible light? (ccc =
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!