Multiply the masses by the respective distances:
(12 kg) (2 m) = 24 J
(25 kg) (1 m) = 25 J
so the heavier bag takes more work to lift, and (b) is the answer.
(d) is technically correct if the sacks are carrying different contents whose masses are not equal, but since we don't know what's inside each sack, assume 12 kg and 25 kg are the masses of each sack *and* their contents.
The sum of the kinetic and potential energies of a system of objects is conserved only when no external force acts on the objects.
<h3>
Conservation of mechanical energy</h3>
The principle of conservation of mechanical energy states that the total mechanical energy of an isolated system (absence of external force) is always constant.
M.A = P.E + K.E
where;
P.E is potential energy
K.E is kinetic energy
Thus, the sum of the kinetic and potential energies of a system of objects is conserved only when no external force acts on the objects.
Learn more about conservation of mechanical energy here: brainly.com/question/24443465
Answer:
The Acceleration will increase
Explanation:
Newton's Second Law of motion: It states that the rate of change of momentum is directly proportional to the applied force and takes places along the direction of the force.
It can be expressed mathematically as,
F ∝ m(v-u)/t
Where (v-u)/t = a
F = kma.
F = force, m = mass of the body, a = acceleration, k = constant of proportionality which tend to unity for a unit force, a unit mass, and a unit acceleration.
Therefore,
F = ma.
From the equation above,
If the net force acting on a body increase, while the mass of the body remains constant, the acceleration will also increase.
Answer:
Light of a shorter wavelength should be used.
Explanation:
This is studied in the phenomenon called photoelectric effect, in which light is able to release electrons from a metal, said electrons are called photoelectrons .
The experiments that have been carried out show that <u>increasing or decreasing the intensity of the light will not cause the photoelectrons to be emitted</u>, what will cause the photoelectrons to be emitted is to increase the frequency of the incident light.
And a higher frequency corresponds to a shorter wavelength according to the equation:

(where
is frequency,
the speed of light, and
the wavelength)
So the answer is that the wavelength of the light must be shortened to cause the emission of electrones.