1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Softa [21]
3 years ago
13

How can you break open a coconut without ANY tools, only your hands, that means no rocks, no hammers, no special tools, and don'

t copy and paste an answer that doesn't even help.
Physics
1 answer:
Zina [86]3 years ago
5 0

Answer:

use your hands, crack it on a rock and u good

Explanation:

You might be interested in
An electric motor does 900j of work for 8 hours. Calculate the power used​
nataly862011 [7]

Answer:

0.031 W

Explanation:

The power used is equal to the rate of work done:

P=\frac{W}{t}

where

P is the power

W is the work done

t is the time taken to do the work W

In this problem, we have:

W = 900 J is the work done by the motor

t = 8 h is the time taken

We have to convert the time into SI units; keeping in mind that

1 hour = 3600 s

We have

t=8\cdot 3600 =28,800 s

And therefore, the power used is

W=\frac{900}{28800}=0.031 W

6 0
3 years ago
I NEED HELP ASAP PLEASE!!!!!
Gre4nikov [31]

Answer:

answer is 2 option because more force is applied

6 0
2 years ago
The half-life of the radioactive isotope Carbon-14 is about 5730 years. Find N in terms of t. The amount of a radioactive elemen
Fudgin [204]

The complete queston is The amount of a radioactive element A at time t is given by the formula

A(t) = A₀e^kt

Answer:  A(t) =N e^( -1.2 X 10^-4t)

Explanation:

Given

Half life =  5730 years.

A(t) =A₀e ^kt

such that

A₀/ 2 =A₀e ^kt

Dividing both sides by A₀

1/2 = e ^kt

1/2 = e ^k(5730)

1/2 = e^5730K

In 1/2 =  5730K

k = 1n1/2 / 5730

k = 1n0.5 / 5730

K= -0.00012 = 1.2 X 10^-4

So that expressing   N in terms of t, we have

A(t) =A₀e ^kt

A₀ = N

A(t) =N e^ -1.2 X 10^-4t

7 0
3 years ago
A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput
Nikitich [7]
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
8 0
3 years ago
Gravity is the force that keeps us on the Earth. It pulls us towards the center of the Earth. If you were to move from the surfa
Nikitich [7]
<h2>Answer: B. Gravitational potential energy </h2>

Explanation:

<em>The gravitational potential energy is the energy that a body or object possesses, due to its position in a gravitational field. </em>

That is why this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.

In the case of the <u>Earth</u>, in which  <u>the gravitational field is considered constant</u>, the value of the gravitational potential energy U_{p} will be:

U_{p}=mgh  

Where m is the mass of the object, g the acceleration due gravity and h the height of the object.

As we can see, the value of U_{p} is directly proportional to the height.

6 0
3 years ago
Other questions:
  • What is centripetal force
    14·1 answer
  • When a cup is placed on a table, which force prevents the cup from falling to the ground? A. gravitational force B. normal force
    8·2 answers
  • How are landslides and mudflows similar
    5·1 answer
  • How would the path of the ball differ on Earth than on the moon?Which statement best compares the accelerations of two objects i
    8·1 answer
  • How does a theory differ from a theory
    14·2 answers
  • A proton with an initial speed of 600,000 m/s is brought to rest by an electric field. Part A Part complete Did the proton move
    8·1 answer
  • Anybody please help me in PHYSICS WAVE.
    11·1 answer
  • What are the 3 main types of global winds in the northern hemisphere?
    13·1 answer
  • Why do our eyes see the color red when we look at a tomato?
    7·2 answers
  • A spring toy jumps up from the floor and comes back down to the floor. Its initial speed is 12 m/s. What is the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!